Keeping It Real: Regional Haul, Zero-Emission, Heavy-Duty Tractors August 6, 2020

BEV

FCEV

NORTH AMERICAN COUNCIL FOR FREIGHT EFFICIENCY

Keeping It Real: Regional Haul, Zero-Emission, Heavy-Duty Tractors

August 6, 2020

Moderated by Rick Mihelic

Director Emerging Technologies, NACFE

Logistics

Before we get started:

Q&A

Submit your questions to the host using the Q&A box in the upper right-hand corner.

Survey

A 30-second survey will pop-up at the end. We appreciate your feedback!

Presentations

A recording of today's webinar will be posted on the ACT News website and you will be emailed a link early next week.

Technical Issues

Contact Ben Chan at: Benjamin.Chan@gladstein.org or 310-573-8545 for assistance.

Use Code NACFE-VR50 for a \$50 discount on ACT Virtual and ACT Expo 2021.

Advanced Clean Tech News FOR THE COMMERCIAL TRANSPORT SECTOR act-news.com

N FV S

MAY 3-6, 2021 | LONG BEACH, CA LONG BEACH CONVENTION CENTER actexpo.com

ACT VIRTUAL

2020 ONLINE EVENT SERIES August to November 2020 act-virtual.com

Moderator:

Rick Mihelic

Director Emerging Technologies North American Council for Freight Efficiency

- Zero Emissions is the goal
- Battery Electric & Hydrogen Fuel Electric Trucks are promising
- They have to make sense in the real world
- The future is where predictions falter or excel

Freight Facts & Figures – North America

Trucks in Commercial Use

- 2.7M Tractors
- 8.8M Single Unit Trucks

Annual Production Capacity

- ~320k HD Truck/Tractors
- ~350k MD Trucks

Production EV/FCEV Trucks Today

- < 100 HD
- < 5,000 MD

HAMERICAN COUNCIL FOR FREIGHT FEEICIENC

Today's Agenda

- NACFE collected 10 real world duty cycles for Regional Haul Class 8 Tractors in its <u>Run on Less Regional</u> event last October
- NREL and Ballard analyzed these for NACFE with respect to future
 - Battery Electric
 - Fuel Cell Electric
- Participants in this webinar will:
 - Hear the results from the Run on Less Regional event
 - Learn what is needed to adopt both battery-electric and hydrogen fuel cell technologies for regional haul applications
 - Understand the opportunities and challenges in transitioning from a diesel truck to a zero-emission vehicle

Today's Panelists

Mike Roeth

Executive Director North American Council for Freight Efficiency

Andrew Kotz, Ph.D.

Commercial Vehicle Research Engineer National Renewable Energy Laboratory

BALLARD

Alan Mace

Market Manager Ballard Power Systems

Learnings from the Run on Less Regional

Mike Roeth

Executive Director North American Council for Freight Efficiency

About ~

All Results

C&S Wholesale Grocers

Hirschbach

Hogan Transportation

J.B. Hunt

Meijer

PepsiCo

Ploger Transportation

Schneider

Southeastern Freight Lines

United Parcel Service

NORTH AMERICAN COUNCIL FOR FREIGHT EFFICIENCY

Technology Day Webinar Series

Webinar 1: October 8 - Hydrogen Webinar 2: October 15 - Connectivity Webinar 3: October 23 - Battery Electric

WEBINAR 1 - October 8 Is Hydrogen a Viable Truck Fuel? Time: 11 am PT | 2 pm ET

Sponsored by:

WEBINAR 2 - October 15 How Can Connectivity Improve Trucking Efficiency? Time: 11 am PT | 2 pm ET

Sponsored by:

WEBINAR 3 - October 23 How Far Will Commercial Battery Electric Vehicles Go? Time: 11 am PT | 2 pm ET

Sponsored by:

REGIONAL HAUL DUTY CYCLE DEFINITIONS

RoLR Stated Duty Cycles		Duty Cycles	Definition	RoLR Fleets	
A-B-A	"Out and back," same place every time	Shuttles	Short multiple runs <150 round trip	Hirschbach	
		Dedicated	150 to ~400 miles RT	Hogan	
		Dedicated Fast Turn	Full 1/2 day drive out ~500 miles RT	SEFL, UPS	
Hub and Spoke	Different destination each day "out and back"	Hub and Spoke	A-B with different place each day	C&S, Schneider	
A-B-C-D-A	Multiple stops during day	City	Multiple drops, low miles	None	
		Diminishing Load	Drop offs only	JB Hunt	
		Milk Run	Drops and pickups later in the run	Meijer, PepsiCo, Ploger	

Efficiency Opportunity

Run on Less Regional confirmed that the ~800k trucks in North America could use much less fuel

*measured in billion gallons diesel

ROL Regional Possible

Conclusions from NREL's work on electrifying the RoLR

CINREL

Andrew Kotz, Ph.D.

Commercial Vehicle Research Engineer National Renewable Energy Laboratory

Regional Haul Electrification

Andrew Kotz, Ph.D. Andrew.Kotz@nrel.gov

Motive for Electrification

Regional haul electrification

- Regional haul and long haul are two of the most challenging duty cycles
 - 1.1% of U.S. vehicles
 - 17% of fuel use
 - Avg. 62k miles annually
- Impact per vehicle
 - @ 6 MPG = 10,450 gal/year
 - 205,000 lbsCO₂/year
- Fleet
 - 298million tonsCO₂/year

What would it take to electrify?

- Battery Size
- Charge Rate
- Infrastructure

ROLR Overview Stats

- NREL data collection 2019
 - October 7th to 23rd
 - 10 Vehicles
 - Between 1Hz & 10Hz
- Geotab data collection: asynchronous
- Average combined daily distance: 3,417 mi (341 mi/day)
- Max combined daily distance: 4,920 mi (492 mi/day) – 10/10/19

Parameter	Miles of Data	Gallons Used	Hours of Operation	Vehicle Days
Value	58,090	6,434	1,921	142
tradiepoint.		Sep	o Oct M	Nov Dec

Duty Cycle

- Average driving speeds ~ 50 mph
- Daily average distance = 430 miles
- Max daily distance = 820 mi
- Challenging for electrification
 - Long distances Lots of energy
 - High speed (drag) Limits energy recapture

Propulsion Energy

- Daily avg. energy statistics (ECM)
 - Daily avg. brake energy: 744 kWh
 - Average idle energy: 6.6 kWh
 - 0.92 gal/day
 - % Energy spent at idle: 0.9%
 - Limited EV energy reduction at idle
- EV power model based on road-load equation
 - Road grade (θ) TomTom database
 - Cap regen @ max power 300 kW
 - Mass(*m*) From vehicle or estimated
 - Avg. day energy recapture through regen
 - ABA: 47 kWh
 - ABCDA: 58 kWh
 - Hub and Spoke: 44 kWh

 $P_{road} = mav + mgsin(\theta)v + mgC_{rr}\cos(\theta)v + C_d Av^3$

Simple EV Model to Estimate SOC Range During Operation

Simple model

- Swapped engine for motor
- Assume 90% of energy makes it to wheels

Charging Opportunities

- Charging opportunities exist throughout the day (dwell periods)
 - Majority are short stops with no charging potential (5 minutes to 30 Min)
 - Fast charging (1+MW) may be an option for 30 min or longer
 - Slow/overnight charging opportunities exist, but may be limited (current technology)

Scenario 1: Depot Charging

- Assumptions Depot charging
 - Charges when stopped for > 50 min
 - 90% conversion eff.
 - No Regen
 - No energy used when stopped
 - No AC/heating
 - Current tech (electric bus):
 - 350 kW charging
 - 660 kWh battery

Bigger batteries are needed to complete recorded trips if charging solely at the truck depot.

Scenario 2: On Route Charging

- Assumptions On-route charging
 - Charges when stopped for > 20 min
 - 90% conversion eff.
 - No Regen
 - No energy used when stopped
 - No AC/heating
 - Current tech (electric bus):
 - 350 kW charging
 - 660 kWh battery

On-route charging can enable high penetration of electric tractors

Advances in technology or changes in operation are needed for full electrification

On-Route Charging Needs

Using 1+ MW "Fast Fill" technology

- Example route is A-B-A operation
- 660 kWh battery
 - Charge at start and end
 - Charge midway at existing stop

Price and Emissions

Fuel economy benefit of EV

- A-B-A: 3.3X improvement
- A-B-C-D-A: **2.4X** improvement
- Hub & Spoke: **2.6X** improvement Price
- Assume \$0.12/kWh
- Emissions benefit (depends where charged)
- Assumptions
 - − All carbon \rightarrow CO₂ (10.1 kg/Gal)
 - Diesel production: 1.84 kgCO₂/Gal
 - US avg. grid: 0.448 kgCO₂/kWh
 - CA grid: 0.223 kgCO₂/kWh
 - WY grid: 0.952 kgCO₂/kWh

Thank You

www.nrel.gov

Andrew Kotz – <u>andrew.kotz@nrel.gov</u>

Findings of Ballard's whitepaper for HFCEVs on RoLR routes

BALLARD

Alan Mace

Market Manager Ballard Power Systems

BALLARD

Fuel Cell Trucks go the Distance

Alan Mace

August 2020

Evaluation of Fuel Cell Technology for HD Regional Haul Trucks

Full-service Regional Haul trucks will be powered by Fuel Cells

Power to maintain speed on demanding routes

Proven range and route flexibility

High energy density to maximize payload

Rapid refueling ensures high truck utilization

Regional Haul Daily Range Requirement

Daily Range, mile	Truck 1	Truck 2	Truck 4	Truck 5	Truck 6	Truck 7	Truck 10
Minimum	370	193	348	79	261	139	216
Average	510	402	461	406	386	414	398
Maximum	819	510	596	714	413	525	503

Summary all data:

- Avg. distance/day
 441 mile (712km)
- Max. distance/day
 819 mile (1,321km)

Regional Haul Utilization Requirement

- Most daily usage is between 10 20 hours/day
- Several instances of > 20 hour/day operation
- A few instances of 24 hour/day operation
- Often a bi-modal distribution: 9 hours break 9 hours
- Variability and Unpredictability

Regional Haul Payload Requirement

- Some trucks ran at maximum load, some returned empty trailers during their routes
- Estimated average payload weight = 24,679
 lbs. (11,218kg)

BALLARD

Electrification without impact on operation & profitability

- Fuel cell trucks can haul a similar payload to a diesel truck
 - Future fuel cell truck weight reductions through lower weight storage tanks and improved integration
- Fuel cell trucks are refueled quickly to maximize revenue
 - Battery recharging downtime prevents full
 utilization of the truck

Fuel Cell Trucks: The Best Zero-Emission Alternative to Diesel

significant payload impact | shorter range

Regional Haul Power Requirement

- Modeled engine power requirements consistently up to 300kW (400HP) or more
- For a fuel cell-battery hybrid architecture, fuel cell power requirements of 200-300kW (270-400HP) with batteries ~20-30kWh are required to meet the duty cycle requirements.

Zero Emission Truck Comparison

	Fuel Cell Electric Truck	Battery Electric Truck		
Design	300kW Fuel cell, 23kWh battery, 80kg H2	1185kWh battery		
Range	450 mile			
Utilization	Refuels < 20 minutes 1 fuel station needed at depot or along the daily route	Recharging: 8 hours at 120kW rate 3 hours at 350kW rate		
Payload	~5,500 lbs less than diesel truck	~17,350 lbs. less than diesel truck		

BALLARD

Implementation

- Regulations requiring zero emissions
- Cost of technology and fuel
- Initial focus on fleets
- Initial public support for infrastructure with strategic, thoughtful fuel station roll-out
- Regional clusters with connecting corridors
- Scale

Hydrogen

 4.5 EUR/kg (at the pump) due to scale, utilization and lower energy cost

Tank and System

 Volume scale up to 150k

 Technological improvements

Fuel Cell Stack

 Volume scale up from 1k to 150k

BALLARD°

There are ~3,400 fuel cell trucks in operation worldwide today

- 3,350 of those trucks are in operation in China (3-9t trucks) for urban deliveries
 - 65% of them powered by Ballard technology
- 50+ trucks in various demonstration projects in US and Europe with truck ranging from Class 4-8 vehicles to 290-tonne mining trucks
- Announced projects: 1,600 fuel cell truck deployment by Hyundai in Switzerland and 800 Nikola fuel cell trucks for Anheuser Busch in the US

BALLARD

Fuel cell trucks meet the requirements for Regional Haul

Total cost of ownership (TCO)¹ EUR / km

"In less than 10 years, it will become cheaper to run a fuel cell electric vehicle than it is to run a battery electric vehicle or an internal combustion engine vehicle for certain commercial applications."

Deloitte/Ballard – Fueling the Future of Mobility (2020) McKinsey & Company - Path to Hydrogen Competitiveness (2020)

BALLARD BY THE NUMBERS

Power to Change the World®

BALLARD.COM

We deliver fuel cell power for a sustainable planet

Thank you

www.ballard.com

Power to Change the World®

Panelist Questions & Answers

Mike Roeth

Executive Director North American Council for Freight Efficiency

Andrew Kotz, Ph.D.

Commercial Vehicle Research Engineer National Renewable Energy Laboratory

BALLARD

Alan Mace

Market Manager Ballard Power Systems

NACFE Resources

- Emerging Technology Guidance Reports
 - <u>https://nacfe.org/report-library/guidance-reports/</u>
- Run on Less Regional Report
 - <u>https://nacfe.org/run-on-less-regional-report/</u>
- NACFE/NREL on Battery Electric Powertrains for Class 8 Regional Haul Freight Based on NACFE Run-On-Less
 - <u>https://nacfe.org/wp-content/uploads/2020/06/EVS33_Mihelic_ID257_NACFE_NREL_PrePub_Download.pdf</u>
- Ballard/NACFE on Fuel Cell Electric Trucks: An analysis of hybrid vehicle specifications for regional freight transport
 - Fuel Cell Electric Trucks: An analysis of hybrid vehicle specifications for regional freight transport

Other Resources

- Ballard
 - <u>https://www.ballard.com/</u>
- National Renewable Energy Laboratory
 - <u>https://www.nrel.gov/transportation/index.html</u>

Thank You!

What did you think of the webinar? Please fill out our 30 second survey.

A recording of today's webinar will be posted on the ACT News website and you will be emailed a link early next week.

