
Intel® Omni-Path Architecture
Enabling Scalable, High Performance Fabrics

Mark S. Birrittella, Mark Debbage, Ram Huggahalli, James Kunz, Tom Lovett, Todd Rimmer, Keith D. Underwood,

Robert C. Zak

Data Center Group

Intel Corporation

USA

{Mark.S.Birrittella, Mark.Debbage, Ram.Huggahalli, James.Kunz, Thomas.D.Lovett, Todd.Rimmer, Keith.D.Underwood,

Robert.C.Zak} @intel.com

Abstract—The Intel® Omni-Path Architecture (Intel® OPA) is

designed to enable a broad class of computations requiring

scalable, tightly coupled CPU, memory, and storage resources.

Integration between devices in the Intel OPA family and Intel

CPUs enable improvements in system level packaging and

network efficiency. When coupled with the new user-focused open

standard APIs developed by the OpenFabrics Alliance (OFA)

Open Fabrics Initiative (OFI), host fabric interfaces (HFIs) and

switches in the Intel OPA family are optimized to provide low

latency, high bandwidth, and high message rate. Intel OPA

provides important innovations to enable a multi-generation,

scalable fabric, including: link layer reliability, extended fabric

addressing, and optimizations for high core count

CPUs. Datacenter needs are also a core focus for Intel OPA, which

includes: link level traffic flow optimization to minimize

datacenter jitter for high priority packets, robust partitioning

support, quality of service support, and a centralized fabric

management system. Basic performance metrics from first

generation HFI and switch implementations demonstrate the

potential of the new fabric architecture.

Keywords—fabric; high performance computing; datacenter;

scalability; reliability

I. INTRODUCTION

The Intel® Omni-Path Architecture (Intel® OPA) defines a
next generation fabric with its heritage in the Intel® True Scale
[1] product line and the Cray Aries interconnect [2]. The Intel
OPA is designed for the integration of fabric components with
CPU and memory components to enable the low latency, high
bandwidth, dense systems required for the next generation of
datacenter. Fabric integration takes advantage of locality
between processing, cache and memory subsystems, and
communication infrastructure to enable more rapid innovation.
Near term enhancements include higher overall bandwidth from
the processor, lower latency, and denser form factor systems.

The first implementation of Intel OPA-based products
focuses on supercomputing as well as the broader high
performance computing environments; however, Intel OPA is
generally applicable to a class of data center level computation
[3] requiring scalable, tightly coupled, CPU, memory, and
storage resources. Intel OPA defines a single interoperable OSI
Layers 1 and 2 architecture that can be used to provide
connectivity between elements in energy efficient

supercomputer systems (e.g. based on Intel® Xeon Phi™
product family), mission critical enterprise computer systems
(e.g. based on Intel® Xeon® processors), and inexpensive data
center servers (e.g. Intel® Atom™).

To enable the largest scale systems in both HPC and the
datacenter, fabric reliability has been substantially enhanced by
combining the link level retry typically found in HPC fabrics
with the conventional end-to-end retry used in traditional
networks. Layer 2 network addressing has also been extended to
account for systems with over 10 million endpoints – enabling
the largest scale datacenters for years to come. To enable support
for a breadth of topologies, Intel OPA provides mechanisms for
packets to change virtual lanes (VLs) as they progress through
the fabric. In addition, higher priority packets are able to
preempt lower priority packets to enable both efficient multi-
application environments as well as reduced latency jitter for
latency sensitive traffic. Finally, fabric partitioning is provided
to isolate traffic between jobs or between users.

A full treatment of the software ecosystem is beyond the
scope of this paper, but several elements are key to enabling that
ecosystem. The Open Fabrics Alliance (OFA) work on the Open
Fabric Interface (OFI) [4] is the long term direction for high
performance user level and kernel level network APIs. The Intel
OPA Fabric Management Software Suite extends Open Fabrics
Enterprise Distribution (OFED) Verbs for management
interfaces, and OFED Verbs data movement APIs are supported
for legacy applications. In addition, Intel OPA extends the
Performance Scaled Messaging (PSM) API to provide HPC
focused transports and an evolutionary software path from Intel
True Scale. Higher level communication libraries, such as the
Message Passing Interface (MPI), and Partitioned Global
Address Space (PGAS) libraries are layered on top of these low
level APIs.

The rest of this paper is structured as follows: Section 2
provides and overview of the Intel OPA and provides context
for subsequent sections; Section 3 covers the Link Transfer
Protocol – describing a number of innovative mechanisms
allowing reliable data transfer, channel management, flow
control management, and physical layer support; Section 4
covers the Link layer – including the mechanisms and
abstractions that enable forwarding of packets between fabric

endpoints (HFIs) via a topology of switching elements. Section
5 covers the Application layer and key software components;
Section 6 provides preliminary descriptions and performance
data for early Intel OPA implementations; and Section 7 covers
related work.

II. INTEL OMNI-PATH ARCHITECTURE (OPA) OVERVIEW

Fig. 1 shows a simplified block diagram of an Intel OPA
fabric and attached devices. Connectivity to the fabric is via
Host Fabric Interfaces (HFIs). Switches may be used in various
topologies to connect a scalable number of endpoints. A
redundant Fabric Manager provides centralized provisioning
and monitoring of fabric resources. Partitions provide a way to
isolate groups of endpoints while providing access to shared
services.

A. Intel OPA Network Layers

By convention, the Intel OPA architecture is described in a
series of Layers, corresponding, notionally, to a subset of the
OSI network stack [5]:

 Layer 1.5: Link Transfer Protocol. Responsible for
reliable delivery of Layer 2 “packets” as well as flow
control and link control information across a link.

 Layer 2: Data Link Layer. Including fabric addressing,
switching and resource arbitration mechanisms, and
partitioning support.

 Layer 4-7: Application layer. Including the interface
between software libraries and the Intel OPA HFI.

Note that the Intel OPA Layer1 (PHY) leverages PHY
standards used in both InfiniBand [6] and Ethernet [7], and will
not be discussed further in this paper.

B. Host Fabric Interface

Each host is connected to the fabric via a Host Fabric
Interface (HFI). HFIs bridge between the semantics of the host
processor and the semantics of the fabric. This minimally
consists of the logic necessary to implement the physical and
link layers of the fabric architecture, such that a node can

Figure 1: Intel Omni-Path Architecture Elements

attach to a fabric and send and receive packets to other servers
or devices. An HFI may include specialized logic for executing
or accelerating upper layer protocols. An HFI must also
support whatever logic is necessary to respond to messages
from network management components.

C. Intel OPA Switches

Intel OPA switches are Layer 2 devices, and act as packet
forwarding mechanisms within a single OPA fabric. Intel OPA
switches are responsible for implementing Quality of Service
(QoS) features, such as adaptive routing and load balancing.
Switches also implement the Intel OPA congestion management
functions. Switches are centrally provisioned and managed by
the fabric management software, and each switch includes a
management agent to respond to management transactions.
Central provisioning means that switch configurations are
programmed by the fabric management software, including
managing the forwarding tables to implement specific fabric
topologies, configuring the QoS parameters, and providing
alternate routes for adaptive routing. As such, all OPA switches
must include Management Agents which communicate with the
OPA Fabric Manager.

D. Intel OPA Management

The Intel OPA includes a centrally managed fabric
supporting redundant Fabric Managers that provision and
manage every device (HFI, switch, gateway) in the fabric
through management agents associated with those devices. The
Primary Fabric Manager is a software component of a Intel OPA
fabric that is selected during the fabric initialization process. The
Primary Fabric Manager is responsible for: discovering the
fabric’s topology; provisioning the fabric components with
Fabric Identifiers and other necessary values for fabric
operations; formulating and provisioning the Switch forwarding
tables; maintaining the Fabric Management Database; and
monitoring fabric utilization, performance and error rates

Fabric management natively occurs in-band using dedicated
buffers in switches on a specific VL (VL15) for management
packets. The management VL may be configured to operate with
or without flow control. Without flow control, management
packets will be dropped if queue resources are not available at a
port. End to end reliability protocols are used to detect dropped
packets.

III. LAYER 1.5: LINK TRANSFER LAYER

The Link Transfer (LT) Layer serves as the interface
between the Physical Layer and the Link Layer. The LT layer
segments end to end Fabric Packets (FPs) into 64 bit Flow
Control Digits (FLITs), and groups 16 FLITs into a Link
Transfer Packet (LTP) to reliably transport FP FLITs and control
information on the link.. Each LTP is protected using a link
LCRC, and is retransmitted when an error occurs. The
temporary, local to the link, LTPs run asynchronous to the end
to end FPs and can contain FLITs from multiple FPs. Each LTP
is striped across up to four lanes provided by the Physical Layer.

A. FLITs and FLIT Types

Each FLIT contains 64 bits of payload and has an associated
type bit making it 65 total bits. The type bit distinguishes body
FLITs from other FLIT types (e.g. head flits) using a Huffman-
like encoding scheme. Body FLITs are encoded with the FLIT
type bit set to 1. All other FLITs are marked with the type bit set
to 0, and the remainder of their type encoding encroaches onto
the space typically reserved for Layer 2 fields. Head FLITs are
encoded with FLIT[63] set to 1 (i.e. 01). All other (non-
body/non-head) FLITs are encoded with FLIT[63] set to 0. Tail

HFI

Switch

Additional Links and Switches

Node 0

Fabric
Manager

HFI

Switch

(Service)
Node x

Switch

HFI

Node x

Partition A Partition B

FLITs are encoded with FLIT[62] set to 1 (i.e. 001). All other
(non-body/non-head/non-tail) FLITs are encoded with FLIT[62]
set to 0 (i.e. 000). Control FLITs are used to orchestrate the
retransmission protocol. Command FLITs are used to return VL
flow control credits [8] back to the transmit side of the link. FP
FLITs and Command FLITs can be mixed within reliable LTPs
for transmission over the link. Control FLITs are sent only in
special null LTPs and are not part of any fabric packet. Idle
FLITs are inserted into the continuously transmitted LTPs when
no FP FLITs are available at the egress port feeding the link.

B. Link Transfer Packets (LTPs)

A single size Link Transfer packet holds sixteen FLITs and
the associated FLIT type bits for transmission over the link. In
addition to the sixteen FLITs each LTP has a two bit VL credit
sideband channel and a 14 bit LCRC which covers the contents
of each individual LTP. There are a total of 128 Bytes (16
FLITS) of data payload and 4 Bytes of overhead (16 FLIT type
bits, 14 CRC, and 2 VL credit bits) resulting in a transfer
efficiency of 64/66. There are two types of LTPs. Reliable LTPs
contain FP FLITs and VL credit return FLITs and are held in a
replay buffer for period of time that is long enough to guarantee
that a lack of a retransmission request indicates it has been
received successfully by the peer. Null LTPs do not consume
space in the replay buffer and are never retransmitted. They are
distinguished using a Control FLIT which specifies a specific
operation in the retransmission protocol..

C. Interface to the Physical Layer

Each LTP is segmented into link transfer quantities without
regard to FLIT and type bit boundaries for transmission over a 1
to 4 lane wide link. Asymmetric link widths of 1x, 2x, 3x, and
4x are supported. Bit alignment within each lane, lane polarity
adjustment, peer physical lane identification detection for lane
swizzle adjustment, packet framing, and lane de-skew are all
accomplished by the Link Transfer (LT) Layer completely
external to the physical layer. The LT Layer utilizes an
additive/synchronous LFSR-based bit scrambler on the transmit
side and de-scrambler on the receive side. The scrambler is
turned on and synchronized once using a turn-on frame at the
end of the link initialization process. The scrambler provides a
high enough probability of edges such that 64/66b type encoding
is not required. This enables encoding LTPs at the same link
transfer efficiency as basic 64/66b encoding.

D. Intel® Omni-Path Packet Integrity Protection (PIP)

Intel Omni-Path PIP is used to enhance the reliability of
transmission across the link. When a failed CRC check occurs,
a retry request containing the failed LTP sequence number is
sent to the peer informing it to retransmit the failed LTP and all
subsequent LTPs. The receive side drops all LTPs until the retry
begins, as indicated a special retry marker null LTP. A replay
buffer is used to provide enough temporary storage to cover the
round trip time of a maximum length cable. The retransmission
protocol uses implied acknowledgments to reduce overhead.
After link initialization, the transmitter sends a special retry
marker null LTP indicating that reliable LTPs will commence
immediately. In response, the peer sends a special one-time
round trip marker null LTP back to inform the transmitter that
the first round trip is complete. As long as a retry request is not
received, LTPs are implicitly acknowledged as being

successfully received by the peer. The protocol supports link
round trip times that exceed the replay buffer depth by sending
empty null LTPs when the replay buffer is full. Round-trip time
is established by counting the LTPs required while waiting for
the initial round trip marker.

E. Intel® Omni-Path Traffic Flow Optimization (TFO) and

Interleave

The Link Transport Layer permits FLITs from different
packets on different VLs to be interleaved within and across
LTPs when they are sent across the link. This allows both higher
link utilization, and lower latency for high priority packets. A
FP using a high priority VL arriving at the link egress point can
preempt an in-progress FP in order to minimize the latency of
the high priority FP. Transmission of the in-progress FP is
suspended to allow transmission of the high priority packet.
Once the high priority FP is transmitted the suspended packet
resumes. A low priority FP can be preempted multiple times at
an individual link egress point. The link egress point monitors
the total amount of time that a low priority FP is delayed by
preemption by multiple high priority FPs, and allows the low
priority FP to complete if a limit, configured by the fabric
manager, is exceeded. Bubbles in a FP are defined as the lack
of available FLITS for the in-progress FP, or underrun, at the
link egress point. If a sending FP for whatever reason is
interrupted by bubbles, FLITS from a second packet can utilize
the channel instead of propagating Idles on the channel. In this
case the substituted packet can be of equal or lower priority.
When FLITS are again available for first packet the link egress
point can return to transmitting the first packet, or wait until the
completion of the second packet.

F. Virtual Lane Credit Management

The transmit side of the link is informed of the total physical
buffer space (in FLITs) on the partner as part of the link
initialization process. The receive side treats the space as a
single pool for all VLs. The transmit side manages this space on
a per VL basis. Up to 31 FP VLs are supported in addition to a
single management VL. A dedicated space is maintained for
each VL as well as a shared space for all VLs. The ratio of fixed
to shared space and the dedicated per VL space size can be
adjusted dynamically by the fabric manager. Per VL
incremental acknowledgements are returned in units of 8 FLITs
as FLITs are removed from the buffer pool for a particular VL.
These acknowledgements travel over the link in the 2 bit VL
credit field in each LTP. 2 bits from 4 sequential LTPs are
aggregated into an 8 bit field which is used to indicate the VL
and number of 8 FLIT units being returned. There are also
optional Command FLITs that can be used to return VL credits
across the link. The 2 bit VL LTP credit field and the Command
FLITs are retransmitted during retry sequences such that no
incremental VC credits are lost when a link error occurs.

IV. LAYER 2: LINK LAYER

The Intel OPA Link Layer (Layer 2) is designed for large
scale systems. Layer 2 fabric packets enable 24-bit fabric
addresses, as well as optimized formats for smaller systems. Up
to 10KB of payload can be carried in a fabric packet after
accounting for the largest Transport Layer header. Service
Channels (SCs) and Virtual Lanes (VLs) provide the building

blocks to enable support for a broad class of topologies as well
as the implementation of Quality of Service (QoS) features.

A. Quality of Service Support

Within OPA, Quality of Service (QoS) features provide a
number of capabilities, among them: job separation/resource
allocation; service separation/resource allocation; application
traffic separation within a given job; protocol (eg.
request/response) deadlock avoidance; fabric deadlock
avoidance; traffic prioritization and bandwidth allocation; and
latency jitter optimization by allowing traffic preemption

The Intel OPA provides a very flexible capability for QoS
via Virtual Fabrics (vFabrics), Traffic Classes (TCs), Service
Levels, (SLs), Service Channels (SCs) and Virtual Lanes (VLs).
At the heart of QoS is the SC mechanism which is used to
differentiate fabric packets within the fabric. In order to support
a wide variety of fabric topologies and configurations, SC
assignments are managed by the fabric manager and the SC of a
given fabric packet may change as it traverses the fabric to
routing dependent deadlock.

The application and sysadmin operations are centered
around vFabrics. A vFabric is the intersection of a set of fabric
ports and one or more application protocols. For each vFabric a
set of QoS and security policies are established by the sysadmin.
A given vFabric is associated with a Traffic Class for QoS and
a Partition for security.

A Traffic Class represents a group of SLs that a given
Transport Layer or application will use. Some Transport Layers
may use multiple QoS levels to avoid deadlock (such as
separating request and response in certain protocols), while
others may take advantage of multiple QoS levels to separate
high priority control traffic from lower priority data traffic.
Transport layers may simply associate a traffic class with a
single SL. The Intel OPA allows up to 32 Traffic Classes, but 4
to 8 is expected to be a more typical configuration. Traffic
Classes are realized through the end to end concept of a Service
Level. Traffic Classes may span multiple Service Levels, but a
Service Level may be assigned to only one Traffic Class. Intel
OPA will support up to 32 Service Levels, but 4 to 8 is expected
to be a more typical configuration. Service Levels are the lowest
layer QoS concept visible to OPA Layer 4 protocols and
applications.

Underlying Service Levels are Service Channels (SCs),
which differentiate packets of different Service Levels as they
pass through the fabric. The SC is the only QoS identifier
contained in the fabric packets, which reduces packet overhead.
In some fabric topologies, Service Levels may span multiple
Service Channels, but a Service Channel may be assigned to
only one Service Level. The Intel OPA supports 32 SCs;
however, SC15 is dedicated to in-band fabric management.

In each endpoint Service levels are mapped to SCs via
SL2SC tables at transmission (mapping each SL to an SC), and
SC2SL tables (mapping inbound SCs to a given SL with perhaps
multiple SCs mapped to the same SL).

Fig. 2 shows an example usage of TC, SL and SC. In this
example we see two HFI endpoints connected via an 8 switch
hop route through the fabric. Two TCs are used, one for a

request/response protocol (e.g. PGAS) assigned to TC0, and one
for storage assigned to TC1. The request/response protocol on
TC0 requires two SLs (SL0 and SL1), while the storage protocol
on TC1 only requires a single SL (SL2). Each SL is assigned a
pair of SCs (SC0/SC1, SC2/SC3 or SC4/SC5) for topology
deadlock avoidance in the fabric, such as what is typically used
in a torus topology. As the packets traverse the fabric, the SC
may change link by link, however, the SL and TC seen by Layer
4 and the application is consistent end to end.

Within a given Link, Service Channels are assigned to
Virtual Lanes (VLs). VLs provide dedicated receive buffers for
incoming Fabric Packets. VLs are also used for resolving
routing deadlocks. The Intel OPA supports up to 32 VLs, though
the actual number supported will be implementation-dependent.
The Intel OPA supports mapping SCs onto VLs, such that
heterogeneous fabric configurations can be supported. SC15 is
always mapped to VL15 for in-band fabric management.
Individual implementations may choose to support fewer than
32 VLs or may be configured to optimize the amount of
buffering per VL by reducing the overall number of VLs
available.

Figure 2: Example of Traffic Class (TC), Service Level (SL), and Service

Class (SC) usage in a topology with credit loop avoidance

Each SC carries traffic of a single service level in a single

traffic class, and the fabric manager configures how SCs map
onto the VL resources at each port. The large number of SCs
helps maintain performance at high levels of utilization, and
mapping a Service Channel to an independent VL can provide
an independent channel through the fabric. Thus, Intel OPA
makes extensive use of Service Channels (SC) to avoid routing
and protocol deadlocks and to avoid head of line blocking
between traffic classes. However, practical constraints may
cause any given implementation to support a smaller number of
VLs on one oe more links. In these cases, multiple SCs may
share a VL, and the fabric manager is responsible for
configuring which SCs can correctly share a VL and how SCs
share VLs so that QoS characteristics can be honored.

The fabric manager also configures how the transmission of
packets across a Virtual Lane is scheduled via a configurable
VLArbitration algorithm. In addition, packet preemption can be
configured to permit a higher priority traffic to preempt a lower
priority packet. This provides further reductions in head of line
blocking for high priority traffic.

B. Congestion Management

Intel OPA takes a multi-faceted approach to managing
congestion. Both medium grained adaptive routing and

link1 link2 link4 link5 link6

HFI0 HFI1

Request/Response
Protocol

(e.g. PGAS)
TC0

SC0

SC1

SC2

Storage
Protocol

TC1

SC3

link3

SC4

SC5

SL0

SL1

SL2

SL0

SL1

SL2

TC0

dispersive routing provide load balancing to avoid hot spots in
the fabric. Medium Grained Adaptive routing identifies
congested inter switch links and dynamically adjusts the routing
of traffic to better utilize other links in the fabric. To minimize
the impact on transport layers which are not prepared for highly
out of order packet delivery, this mechanism limits its frequency
of adjustment.

In turn, dispersive routing probabilistically distributes traffic
across multiple routes through the fabric or even across multiple
virtual lanes within a single route. Dispersive routing makes use
of multipathing, which allows multiple paths to be defined
between a pair of endpoints so that a source can spread its traffic
across the multiple paths. This reduces the formation of hot spots
in the fabric which can result from unbalanced traffic patterns.
There is no ordering defined across packets that use different
paths. Where ordering is required between a pair of packets the
source must send the packets on the same path, or use other
mechanisms to guarantee ordering or recover from out of order
delivery. The Intel OPA does not specify how endpoints choose
which path to use for a given packet. Endpoints may use any of
the available paths as long as they maintain their own ordering
requirements.

When these techniques work well, they avoid congestion at
intermediate points in the fabric by balancing utilization across
all links for traffic patterns which do not oversubscribe any
endpoints. However, some traffic patterns do oversubscribe
some endpoints. In these cases, many sources are sending to a
single destination endpoint at a rate that exceeds the bandwidth
of the link to the destination endpoint. This traffic pattern can
cause congestion trees to form as queues fill throughout the
fabric due to the destination asserting link level flow control.
Congestion trees are not an inherent problem; however, they
often block the progress of packets flowing to an uncongested
destination. The Intel OPA defines an explicit congestion
notification protocol that marks packets passing through
congested switch ports. When the packet reaches its destination
a backward notification is returned to the source to cause the
source to reduce the bandwidth of packets to that destination.
This can permit better fairness for all senders as well as reduce
the impact on other flows that may be sharing the same VLs on
the same links as the congested flows. Over time the source will
gradually begin to increase bandwidth, and either explicit
congestion notification will cause it to continue running at a
reduced bandwidth or it will return to full bandwidth.

C. Partitions

Partitions are an isolation mechanism that operate at the Link
Layer (Layer 2), with every Fabric packet being associated with
a single partition.. A partition provides isolation to the group of
endpoints that are members of the partition for all types of traffic
(i.e. all Transpor Layers); however, this does not prevent a
Transport Layer from providing finer grained security
mechanisms. A partition in an Intel OPA fabric contains a group
of Intel OPA endpoints. Communication is allowed within the
partition, and is prevented with endpoints that are not in the
partition. This allows partitions to be used to provide isolation
between applications running on a fabric or between users on a
fabric.

Individual endpoints may be identified as a full or limited
member of a given partition. Full members are permitted to
communicate with any member of the partition, but limited
members are only permitted to communicate with full members.
This mechanism permits the fabric to have shared services, such
as management or a common global file system, while
preserving isolation between non-service partitions. Such
services often require all end points to be members of the
partition for that shared service. By making the providers of the
shared service full members and the clients limited members,
clients may access the service while still preventing clients from
communicating directly to each other.

Each endpoint is a member of at least the management
partition, and may be a member of multiple partitions. A typical
endpoint will be a member of at least one application partition.
When a Host node has multiple endpoints, each endpoint may
have membership in different partitions. There are no
architectural restrictions regarding which endpoints may be
members of which partitions. For example, partitions may
overlap and partitions need not be related to the physical
topology of the fabric.

Partition security is enforced in the edge port of the switch
connected to the HFI. The security mechanisms ensure that a
source injects packets only into partitions of which it is a
member, and the packets are delivered only to endpoints in the
same partition.

Partitions are created and managed by the Fabric Manager.
It initializes the registers and tables used to enforce partition
security and modifies them as partitions are redefined. Software
running on the Host Nodes does not control the partition security
registers and tables.

V. LAYER 4 AND KEY SOFTWARE COMPONENTS

Multiple Layer 4 (Transport Layer) definitions can be
encapsulated within the Layer 2 packets. These Transport
Layers are optimized around common HPC and datacenter
usage models, and are responsible for carrying the user facing
semantics and providing the end-to-end portion of the reliability
definition. All current Transport Layer definitions provide an
invariant CRC (ICRC) on each packet that covers Layer 2 and
Layer 4 header fields. On packet loss or corruption, an end-to-
end protocol will retransmit the packets. Software layers are
then provided over the Transport Layer to provide the network
API to the user. Three key software layers include PSM, OFED
Verbs, and the OpenFabrics Alliance (OFA) Open Fabrics
Interface (OFI).

A. Performance Scaled Messaging

Performance Scaled Messaging (PSM) is a user-level library
that provides a reliable fabric transport Application
Programming Interface (API) for the Intel® Omni-Path HFI.
The PSM API provides a matched queue (MQ) semantic that is
a building block for MPI tag-matching send and receive calls.
The PSM API has been extended for the Omni-Path architecture
to provide 96 bits of tag matching to support up to 32 bits of user
tag, up to 32 bits of source rank information and up to 32 bits of
communicator context. This allows for significant scaling
beyond the 64 bits of tag provided by the previous PSM
implementation. The message-passing primitives provided by

PSM are point-to-point. The PSM implementation is designed
to scale to the order of millions of MPI ranks.

Collective MPI operations can be synthesized from the
point-to-point send and receive primitives using optimized
algorithms that can be selected by parameters such as message
size, collective communicator size and topology. Additionally,
PSM provides an active messages (AM) API that can be used to
implement arbitrary communication protocols using the active
messages paradigm. This is used to implement a PGAS
programming model using the OpenSHMEM API running over
a GasNET conduit.

B. OFED Verbs and Compatibility

The Intel® Omni-Path HFI supports a fully compliant Verbs
implementation. This includes support for UD, UC and RC
queue pairs. Shared receive queues (SRQ) are also supported.
The standard user-level and kernel-level Verbs library interfaces
are provided. All standard Verbs management and performance
protocols are supported. In addition to the 2KB and 4KB packet
Maximum Transfer Unit (MTU) sizes supported in InfiniBand,
the Intel OPA introduces an 8KB MTU which can be used by a
Verbs implementation to reduce the required packet rate for
large messages.

C. OFA Open Fabric Interface

The Open Fabrics Interface (OFI) [4] provides a general
purpose software framework that is capable of handling a variety
of fabric hardware and provides a standardized set of
communication operations to higher code layers. The
framework provides a library called libfabric that user-level
applications can link to.

D. Leveraging Existing Ecosystems and Software

The host software stack integrates into the existing Open
Fabrics Alliance software stack and into existing software
distributions such as RHEL, SLES and OFED. The standard
suite of fabric protocols and APIs are fully supported. This
ensures that the investment in host software middleware and
applications is preserved.

VI. FIRST GENERATION IMPLEMENTATION

The first generation implementation of Intel OPA has been
announced for introduction later this year. The first generation
of products uses a physical layer that leverages industry standard
link speeds for 100 Gigabit Ethernet and EDR InfiniBand (4
lanes of 25.78125) to yield 100 Gb/s (12.5 GB/s) of bandwidth
available for Link Layer packets after the overhead required by
the Link Transfer Layer for reliability.

A. Intel® Omni-Path HFI Product Architecture

The Intel® Omni-Path HFI is connected to the host system
by a PCI Express (PCIe) 3.0 compliant port that supports a
maximum link speed of 8GT/s and a link width of up to 16 lanes.
This gives a maximum host bandwidth of 15.75GB/s in each
direction after factoring out the 128b130b encoding. The HFI is
connected to the fabric by one Intel® Omni-Path Architecture
compliant fabric. The application-specific integrated circuit
(ASIC) implementation provides one or two such HFIs in a
single package. The ASIC with two HFIs has two logically
independent HFIs with separate PCI-e ports, fabric ports, data

paths, memory and control logic, and with shared ASIC level
infrastructure for power, clock, ASIC reset, low-level
control/management and some shared pins. The maximum
available fabric bandwidth for two HFIs using both directions of
the fabric link is 50GB/s. The ASIC can be used in a variety of
product configurations including standard form factor PCIe
cards, custom mezzanine card form factors, LAN on
Motherboard (LOM) solutions, and integrated into the processor
package.

The HFI partitions the layer 4 transport function between the
HFI hardware and the host software stack. In addition to typical
Link Layer offloads (e.g. packet formation and CRC
generation), the hardware provides targeted offloads to
accelerate typical per-packet transport layer capabilities and
reduce software overhead. In turn, the software on-load
component is responsible for higher level transport protocol
functionality including maintaining connection state, mapping
message-level transactions to packet sequences, and the end-to-
end reliability protocol.

Host software can select between two send mechanisms
provided by the hardware. Short messages use the Programmed
Input/Output (PIO) Send mechanism to minimize latency. A
large PIO send buffer is dynamically partitioned into contexts
that are mapped for direct user mode application access.
Sufficient contexts are provided to support the large core counts
on the next generation of Intel® Xeon Phi™ processors. Each
context provides a memory mapped FIFO that is used to
generate a flow-controlled stream of packets to the link. Host
software writes data directly into the send context to generate
the packet on the fabric.

For longer messages, typically consisting of multiple
packets, the Send Direct memory Access (SDMA) mechanism
is used. Each SDMA engine processes an independent
descriptor queue held in host memory, and host software
appends descriptors to these queues. Taking the CPU core out of
the data movement path allows the SDMA mechanism to
achieve higher bandwidth and reduced CPU overhead.
Additionally, there is an Automatic Header Generation (AHG)
feature that allows hardware to generate headers for a stream of
packets based on update information held in the descriptors to
reduce the overhead of descriptor creation. Hardware arbitrates
across all the packet sources, arbitrates for VL resources and
link-level credits, performs packet header integrity checking,
and finally egresses to the link.

The receive hardware provides a matching number of
receive contexts to enable packets to be directly delivered to a
user process. A variety of mapping algorithms are provided
including the receive context number being specified directly in
a packet header field, a lookup table based on the Queue Pair
Number (QPN) packet field, and a programmable mapping
based on hashes of arbitrary header fields called Receive Side
Mapping (RSM). The receive side of the HFI provides eager
receive and rendezvous receive capabilities for short and long
messages, respectively. Host software chooses between the
protocols for a given message. Eager provides lowest latency
and highest message rate by delivering packets to FIFO ring
buffers in host memory. Payloads are subsequently consumed
by host software, typically involving a memory copy to the final

packet destination. Rendezvous is used for long messages, and
achieves direct data placement to give the best bandwidth and
reduced CPU utilization. The rendezvous protocol uses Token
Identifier (TID) values so that destination memory can be pre-
registered on the receive side, and then the send side generates
packets with the allocated TID values to select the appropriate
mapping for direct data placement. An additional mechanism
allows for header sequence numbers to be checked in hardware
to significantly reduce the number of Transport Layer packet
headers that have to be delivered to software for processing.
Packet arrival can be determined by polling on header status in
host memory, or using a coalesced interrupt scheme.

B. Intel® Omni-Path HFI Software Implementation

1) Performance Scaled Messaging
In the PSM library, short message send and receive is

implemented using direct access to the send context and receive
context giving low latency and high message rate. PSM actively
polls on the receive side for arriving packets to eliminate host
interrupt overheads. PSM accesses the SDMA and expected
receive protocol mechanisms using system calls into the host
driver. This allows the driver to pin host memory pages for I/O
DMA, and to register the physical pages into the HFI. A
registration caching scheme is used to reduce the overheads on
the receive side in the typical case where there is significant
reuse of destination memory buffers at the MPI application
level.

For each connection between a PSM sender and a PSM
receiver, state is required to hold identification, status,
sequencing and control information. This is termed connection
state or flow state, and the size of this is denoted B (in bytes).
The Intel® Omni-Path HFI architecture holds no connection
state in the HFI. This means that there are no hardware capacity,
caching or scaling limits as the size of the cluster increases.
Instead all such connection state is held in the host and benefits
from the host memory capacity, cache capacity and bandwidth
available in the host memory system.

2) OFA Verbs
The implementation is partitioned between hardware

capability in the HFI and host software. The hardware
capabilities include the PIO send contexts, SDMA engines and
AHG feature on the send side. Under driver control some portion
of the PIO send contexts are set aside for driver use for Verbs
protocols and these are typically used for small messages and
for Verbs ACKs. Some or all of the SDMA engines are used for
large message transfers for Verbs transactions. On the receive
side the incoming Verbs protocol packets are spread across
receive contexts and CPU cores using lower order bits from the
QPN value and a mapping table. Interrupt coalescing is used to
moderate the host interrupt rate without overly delaying
incoming packets that are latency sensitive. These features allow
the Verbs performance to scale as more CPU core resources are
assigned to running the Verbs protocol code.

3) OFA OFI
The communication operations of libfabric are layered on

top of the APIs mentioned in the previous sections. The message
queue and tagged message queue operations are layered on PSM
MQ, and collectives can be synthesized in terms of PSM MQ
operations. Put, get, atomics and other operations designed to

support PGAS or MPI3 RMA operations are layered on top of
PSM AM implementation. Verbs is available through the
standard Verbs access libraries.

C. Switch Product Architecture

The first implementation of an Intel OPA switch is a
monolithic ASIC with 48 ports, each with 100 Gbps (nominal)
links, including integrated long-reach serializer-deserializers
(SERDES). Each ports supports 8 user VLs (plus one VL for
fabric management). As shown in Fig. 3, the internal
architecture is based on a bandwidth over-provisioned
hierarchical crossbar, in which 4-ports comprise an MPort, with
a local crossbar. The 12 Mports are connected via a central
crossbar. Switching decisions are based on 48K (logical) entry
unicast route table (URT), as well as a 16K multicast route table
(MRT). URTs are replicated per Mport to provide adequate
address lookup bandwidth. Arbitration logic supports packet
pre-emption as well as per VL bandwidth metering. An on-chip
microcontroller (MCU) translates high level management
commands, transmitted via the Cport (port 0 of the switch) into
low level hardware accesses required to manage on-chip
resources. In addition, an external PCIe port is provided to allow
an external CPU to directly manage the switch. An I2C interface
provides access to off-chip electrically erasable programmable
read only memory (EEPROM) and connectivity to baseboard
management devices.

Figure 3:Intel OPA 48-Port Switch Block Diagram

D. Reliability Implementation

Data integrity and reliability is achieved at multiple levels.
The fabric links are protected by link-level CRC with a link-
level retry mechanism. The HFI and switch hardware paths are
protected by error correcting code (ECC) and parity. End-to-end
packet integrity is provided by a 32-bit invariant ICRC that is
generated and validated in hardware. Packet sequence numbers
(PSNs) are used to detect missing, duplicated and reordered
packets. The standard 24-bit PSNs are expanded to 31 bits to
give improved robustness for excessive delays in the fabric that
could otherwise potentially lead to sequence number roll-over in
extreme scenarios. Recovery mechanisms are implemented in
host software using time-out and retry techniques.

P1

External
CPU

EEPROM

Base
Mgr

I2C
Cport

MCU
Port

0

Central Crossbar

URT

MRT

Mport Crossbar

Mport 0

TX R
X

SER-
DES

TX R
X

SER-
DES

TX R
X

SER-
DES

TX R
X

SER-
DES

URT

Mport Crossbar

Mport 11

TX R
X

SER-
DES

TX R
X

SER-
DES

TX R
X

SER-
DES

TX R
X

SER-
DES

P48

OPA Switch ASIC

PCI-e

E. Preliminary Performance Results

The HFI and switch implementations maximize the
utilization of the high efficiency links through architecture
improvements. First generation Intel OPA ASIC-level
performance metrics relative to Intel True Scale are shown in
Table I. The HFI takes full advantage of the host IO interface,
achieving a factor of 4.6 improvement over Intel True Scale in
small message rate performance. Switch message rates are also
improved by a similar factor through optimizing internal
pipelines to deliver maximum line rate for 64B packets. Switch
latency under idle conditions is reduced by a significant 65ns
(switch latency range indicates a second-order dependency on
the choice of ports).

TABLE I. FIRST GENERATION INTEL OPA COMPARED TO INTEL TRUE

SCALE

Intel

 True Scale
Intel OPA

SERDES Rate (Gbps) 10 25.78

Peak Port Bandwidth (Gbps) 32 100

HFI Message Rate (Million

Messages per second)
35 160

Switch Ports 36 48

Switch Packet Rate (Million

Packets per Second)
42 195

Switch Latency (ns) 165-175 100-110

VII. RELATED WORK

The Intel OPA is directly related to the Cray Aries [2] and
Intel True Scale [1] and other InfiniBand [6] architectures. In
many ways, the Intel OPA is an evolution of architectural
features leveraging the best practices. In other ways, Intel OPA
introduces significant new functionality, including :

An extensible, open, high performance API framework in PSM,

and more recently, OFA OFI that is amenable to creating a low-

impedance interface between evolving HPC middleware (e.g.

MPI), and the HFI hardware/software interface [9] (for

example, in the first generation HFI, this has resulted in low

latency, high bandwidth implementation which on-loads

portions of the fabric protocol on processor CPU, memory, and

cache resources. Intel® Xeon® processor and Intel® Xeon

Phi™ processor products based on high numbers of cores, and

high performance memory systems); Service Level, and

Service Channel extensions to Virtual Lane abstraction which

enable efficient allocation of HFI an switch resources; and a

Link Transfer Protocol layer in the network stack which enables

pre-empting of low priority packets by higher priority packets,

enabling efficient bulk transfer using extended (8K) MTU

sizes, while simultaneously reducing latency jitter seen in

tightly coupled (e.g. MPI) communication.

VIII. CONCLUSIONS

The Intel Omni-Path Architecture (OPA) introduces a multi-
generation fabric architecture designed to meet the scalability

needs of datacenters ranging from the high-end of HPC to the
breadth of commercial datacenters. Link level reliability and
pervasive ECC enable the reliability needed for large scale
systems. The QoS architecture is coupled with new packet
preemption capabilities to enable both bandwidth fairness and
low latency jitter for high priority packets. The first
implementation silicon is available, and initial performance
measurements are promising. Each link provides 100 Gb/s of
bandwidth, and each HFI can achieve 160 million messages per
second. Switch latency has been reduced to under 110 ns. These
are substantial improvements relative to prior generation
products while preserving the existing software ecosystem. In
addition, a new community standard network API – OFA OFI -
is in development that is designed to match user level semantic
requirements to enable hardware innovation beneath the API.

REFERENCES

[1] Intel, "Intel True Scale Fabric Architecture: Enhanced HPC

Architecture and Performance," Intel, Santa Clara, CA, USA, 2012.

[2] G. Faanes, A. Bataineh, D. Roweth, T. Court, E. Froese, B. Alverson, T.

Johnson, J. Kopnick, M. Higgins and J. Reinhard, "Cray cascade: a

scalable HPC system based on a Dragonfly network," in SC12:
International Conference on High Performance Computing,

Networking, Storage and Analysis, Los Alimitos, CA, USA, 2012.

[3] L. A. Barroso, J. Clidara and U. Hozle, The Datacenter as a Computer:
An Introduction to the Design of Warehouse-Scale Machines, Second

Edition, California, USA: Morgan and Claypool Publishers, 2013.

[4] P. Grun, S. Hefty, S. Sur, D. Goodell, R. D. Russell, H. Pritchard and J.
M. Squyres, "A Brief Introduction to the OpenFabrics Interfaces: A

New Network API for Maximizing High Performance Application
Efficiency," in IEEE Hot Interconnect 23, Santa Clara, CA, USA, 2015.

[5] ISO/IEC, 7498-1: Information technology -- Open Systems

Interconnection -- Basic Reference Model: The Basic Model, Geneva,
Switzerland: ISO, 1996.

[6] InfiniBand Trade Association and others, Infiniband Architecture

Specification: Release 1.0, InfiniBand Trade Association, 2000.

[7] IEEE, IEEE Std 802.3bj(TM)-2012; Amendment 2: Physical Layer

Specifications and Management Parameters for 100 Gb/s Operation

Over Backplanes and Copper Cables, New York, NY, USA: IEEE
Computer Society, 2014.

[8] W. J. Dally, "Virtual-channel Flow Control," Parallel and Distributes

Systems, IEEE Transactions on, vol. 3, no. 2, pp. 194-205, 1992.

[9] M. Luo, K. Seager, K. Murthy, C. Archer, S. Sur and S. Hefty, "Early

Evaluation of Scalable Fabric Interface for PGAS Programming

Models," in PGAS 2014, 8th International Conference on Partitioned
Global Address Space Programming Models, Eugene, OR, USA, 2014.

© 2015 IEEE. Personal use of this material is permitted.

Permission from IEEE must be obtained for all other uses, in

any current or future media, including reprinting/republishing

this material for advertising or promotional purposes, creating

new collective works, for resale or redistribution to servers or

lists, or reuse of any copyrighted component of this work in

other works.

