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Abstract—The Intel® Omni-Path Architecture (Intel® OPA) is 

designed to enable a broad class of computations requiring 

scalable, tightly coupled CPU, memory, and storage resources. 

Integration between devices in the Intel OPA family and Intel 

CPUs enable improvements in system level packaging and 

network efficiency.  When coupled with the new user-focused open 

standard APIs developed by the OpenFabrics Alliance (OFA) 

Open Fabrics Initiative (OFI), host fabric interfaces (HFIs) and 

switches in the Intel OPA family are optimized to provide low 

latency, high bandwidth, and high message rate.  Intel OPA 

provides important innovations to enable a multi-generation, 

scalable fabric, including: link layer reliability, extended fabric 

addressing, and optimizations for high core count 

CPUs.  Datacenter needs are also a core focus for Intel OPA, which 

includes: link level traffic flow optimization to minimize 

datacenter jitter for high priority packets, robust partitioning 

support, quality of service support, and a centralized fabric 

management system.  Basic performance metrics from first 

generation HFI and switch implementations demonstrate the 

potential of the new fabric architecture. 

Keywords—fabric; high performance computing; datacenter; 

scalability; reliability 

I. INTRODUCTION 

The Intel® Omni-Path Architecture (Intel® OPA) defines a 
next generation fabric with its heritage in the Intel® True Scale  
[1] product line and the Cray Aries interconnect  [2]. The Intel 
OPA is designed for the integration of fabric components with 
CPU and memory components to enable the low latency, high 
bandwidth, dense systems required for the next generation of 
datacenter.  Fabric integration takes advantage of locality 
between processing, cache and memory subsystems, and 
communication infrastructure to enable more rapid innovation.  
Near term enhancements include higher overall bandwidth from 
the processor, lower latency, and denser form factor systems.   

The first implementation of Intel OPA-based products 
focuses on  supercomputing as well as the broader high 
performance computing environments; however, Intel OPA is 
generally applicable to a class of data center level computation  
[3] requiring scalable, tightly coupled, CPU, memory, and 
storage resources. Intel OPA defines a single interoperable OSI 
Layers 1 and 2 architecture that can be used to provide 
connectivity between elements in energy efficient 

supercomputer systems (e.g. based on Intel® Xeon Phi™ 
product family), mission critical enterprise computer systems 
(e.g. based on Intel® Xeon® processors), and inexpensive data 
center servers (e.g. Intel® Atom™). 

To enable the largest scale systems in both HPC and the 
datacenter, fabric reliability has been substantially enhanced by 
combining the link level retry typically found in HPC fabrics 
with the conventional end-to-end retry used in traditional 
networks. Layer 2 network addressing has also been extended to 
account for systems with over 10 million endpoints – enabling 
the largest scale datacenters for years to come. To enable support 
for a breadth of topologies, Intel OPA provides mechanisms for 
packets to change virtual lanes (VLs) as they progress through 
the fabric. In addition, higher priority packets are able to 
preempt lower priority packets to enable both efficient multi-
application environments as well as reduced latency jitter for 
latency sensitive traffic. Finally, fabric partitioning is provided 
to isolate traffic between jobs or between users. 

A full treatment of the software ecosystem is beyond the 
scope of this paper, but several elements are key to enabling that 
ecosystem. The Open Fabrics Alliance (OFA) work on the Open 
Fabric Interface (OFI) [4] is the long term direction for high 
performance user level and kernel level network APIs.  The Intel 
OPA Fabric Management Software Suite extends Open Fabrics 
Enterprise Distribution (OFED) Verbs for management 
interfaces, and OFED Verbs data movement APIs are supported 
for legacy applications. In addition, Intel OPA extends the 
Performance Scaled Messaging (PSM) API to provide HPC 
focused transports and an evolutionary software path from Intel 
True Scale. Higher level communication libraries, such as the 
Message Passing Interface (MPI), and Partitioned Global 
Address Space (PGAS) libraries are layered on top of these low 
level APIs.  

The rest of this paper is structured as follows: Section 2 
provides and overview of the Intel OPA and provides context 
for subsequent sections; Section 3 covers the Link Transfer 
Protocol – describing a number of innovative mechanisms 
allowing reliable data transfer, channel management, flow 
control management, and physical layer support; Section 4 
covers the Link layer – including the mechanisms and 
abstractions that enable forwarding of packets between fabric 



endpoints (HFIs) via a topology of switching elements. Section 
5 covers the Application layer and key software components; 
Section 6 provides preliminary descriptions and performance 
data for early Intel OPA implementations; and Section 7 covers 
related work. 

II. INTEL OMNI-PATH ARCHITECTURE (OPA) OVERVIEW 

Fig. 1 shows a simplified block diagram of an Intel OPA 
fabric and attached devices.  Connectivity to the fabric is via 
Host Fabric Interfaces (HFIs).  Switches may be used in various 
topologies to connect a scalable number of endpoints. A 
redundant Fabric Manager provides centralized provisioning 
and monitoring of fabric resources.  Partitions provide a way to 
isolate groups of endpoints while providing access to shared 
services.  

A. Intel OPA Network Layers 

By convention, the Intel OPA architecture is described in a 
series of Layers, corresponding, notionally, to a subset of the 
OSI network stack  [5]:  

 Layer 1.5: Link Transfer Protocol.  Responsible for 
reliable delivery of Layer 2 “packets” as well as flow 
control and link control information across a link. 

 Layer 2: Data Link Layer.  Including fabric addressing,  
switching and resource arbitration mechanisms, and 
partitioning support.     

 Layer 4-7: Application layer. Including the interface 
between software libraries and the Intel OPA HFI.  

Note that the Intel OPA Layer1 (PHY) leverages PHY 
standards used in both InfiniBand  [6] and Ethernet  [7], and will 
not be discussed further in this paper.  

B. Host Fabric Interface 

Each host is connected to the fabric via a Host Fabric 
Interface (HFI). HFIs bridge between the semantics of the host 
processor and the semantics of the fabric.  This minimally 
consists of the logic necessary to implement the physical and 
link layers of the fabric architecture, such that a node can 

 

Figure 1: Intel Omni-Path Architecture Elements 

attach to a fabric and send and receive packets to other servers 
or devices. An HFI may include specialized logic for executing 
or accelerating upper layer protocols. An HFI must also 
support whatever logic is necessary to respond to messages 
from network management components. 

C. Intel OPA Switches 

Intel OPA switches are Layer 2 devices, and act as packet 
forwarding mechanisms within a single OPA fabric. Intel OPA 
switches are responsible for implementing Quality of Service 
(QoS) features, such as adaptive routing and load balancing. 
Switches also implement the Intel OPA congestion management 
functions. Switches are centrally provisioned and managed by 
the fabric management software, and each switch includes a 
management agent to respond to management transactions. 
Central provisioning means that switch configurations are 
programmed by the fabric management software, including 
managing the forwarding tables to implement specific fabric 
topologies, configuring the QoS parameters, and providing 
alternate routes for adaptive routing. As such, all OPA switches 
must include Management Agents which communicate with the 
OPA Fabric Manager. 

D. Intel OPA Management 

The Intel OPA includes a centrally managed fabric 
supporting redundant Fabric Managers that provision and 
manage every device (HFI, switch, gateway) in the fabric 
through management agents associated with those devices.  The 
Primary Fabric Manager is a software component of a Intel OPA 
fabric that is selected during the fabric initialization process. The 
Primary Fabric Manager is responsible for: discovering the 
fabric’s topology; provisioning the fabric components with 
Fabric Identifiers and other necessary values for fabric 
operations; formulating and provisioning the Switch forwarding 
tables; maintaining the Fabric Management Database; and 
monitoring fabric utilization, performance and error rates 

Fabric management natively occurs in-band using dedicated 
buffers in switches on a specific VL (VL15) for management 
packets. The management VL may be configured to operate with 
or without flow control. Without flow control, management 
packets will be dropped if queue resources are not available at a 
port. End to end reliability protocols are used to detect dropped 
packets. 

III. LAYER 1.5: LINK TRANSFER LAYER  

The Link Transfer (LT) Layer serves as the interface 
between the Physical Layer and the Link Layer. The LT layer 
segments end to end Fabric Packets (FPs) into 64 bit Flow 
Control Digits (FLITs), and groups 16 FLITs into a Link 
Transfer Packet (LTP) to reliably transport FP FLITs and control 
information on the link.. Each LTP is protected using a link 
LCRC, and is retransmitted when an error occurs. The 
temporary, local to the link, LTPs run asynchronous to the end 
to end FPs and can contain FLITs from multiple FPs. Each LTP 
is striped across up to four lanes provided by the Physical Layer. 

A. FLITs and FLIT Types 

Each FLIT contains 64 bits of payload and has an associated 
type bit making it 65 total bits. The type bit distinguishes body 
FLITs from other FLIT types (e.g. head flits) using a Huffman-
like encoding scheme. Body FLITs are encoded with the FLIT 
type bit set to 1. All other FLITs are marked with the type bit set 
to 0, and the remainder of their type encoding encroaches onto 
the space typically reserved for Layer 2 fields. Head FLITs are 
encoded with FLIT[63] set to 1 (i.e. 01). All other (non-
body/non-head) FLITs are encoded with FLIT[63] set to 0. Tail 
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FLITs are encoded with FLIT[62] set to 1 (i.e. 001). All other 
(non-body/non-head/non-tail) FLITs are encoded with FLIT[62] 
set to 0 (i.e. 000). Control FLITs are used to orchestrate the 
retransmission protocol. Command FLITs are used to return VL 
flow control credits  [8] back to the transmit side of the link. FP 
FLITs and Command FLITs can be mixed within reliable LTPs 
for transmission over the link. Control FLITs are sent only in 
special null LTPs and are not part of any fabric packet. Idle 
FLITs are inserted into the continuously transmitted LTPs when 
no FP FLITs are available at the egress port feeding the link. 

B. Link Transfer Packets (LTPs) 

A single size Link Transfer packet holds sixteen FLITs and 
the associated FLIT type bits for transmission over the link. In 
addition to the sixteen FLITs each LTP has a two bit VL credit 
sideband channel and a 14 bit LCRC which covers the contents 
of each individual LTP. There are a total of 128 Bytes (16 
FLITS) of data payload and 4 Bytes of overhead (16 FLIT type 
bits, 14 CRC, and 2 VL credit bits) resulting in a transfer 
efficiency of 64/66. There are two types of LTPs. Reliable LTPs 
contain FP FLITs and VL credit return FLITs and are held in a 
replay buffer for period of time that is long enough to guarantee 
that a lack of a retransmission request indicates it has been 
received successfully by the peer. Null LTPs do not consume 
space in the replay buffer and are never retransmitted. They are 
distinguished using a Control FLIT which specifies a specific 
operation in the retransmission protocol.. 

C. Interface to the Physical Layer 

Each LTP is segmented into link transfer quantities without 
regard to FLIT and type bit boundaries for transmission over a 1 
to 4 lane wide link. Asymmetric link widths of 1x, 2x, 3x, and 
4x are supported. Bit alignment within each lane, lane polarity 
adjustment, peer physical lane identification detection for lane 
swizzle adjustment, packet framing, and lane de-skew are all 
accomplished by the Link Transfer (LT) Layer completely 
external to the physical layer. The LT Layer utilizes an 
additive/synchronous LFSR-based bit scrambler on the transmit 
side and de-scrambler on the receive side. The scrambler is 
turned on and synchronized once using a turn-on frame at the 
end of the link initialization process. The scrambler provides a 
high enough probability of edges such that 64/66b type encoding 
is not required. This enables encoding LTPs at the same link 
transfer efficiency as basic 64/66b encoding. 

D. Intel® Omni-Path Packet Integrity Protection (PIP) 

Intel Omni-Path PIP is used to enhance the reliability of 
transmission across the link. When a failed CRC check occurs, 
a retry request containing the failed LTP sequence number is 
sent to the peer informing it to retransmit the failed LTP and all 
subsequent LTPs. The receive side drops all LTPs until the retry 
begins, as indicated a special retry marker null LTP. A replay 
buffer is used to provide enough temporary storage to cover the 
round trip time of a maximum length cable.  The retransmission 
protocol uses implied acknowledgments to reduce overhead. 
After link initialization, the transmitter sends a special retry 
marker null LTP indicating that reliable LTPs will commence 
immediately. In response, the peer sends a special one-time 
round trip marker null LTP back to inform the transmitter that 
the first round trip is complete. As long as a retry request is not 
received, LTPs are implicitly acknowledged as being 

successfully received by the peer. The protocol supports link 
round trip times that exceed the replay buffer depth by sending 
empty null LTPs when the replay buffer is full. Round-trip time 
is established by counting the LTPs required while waiting for 
the initial round trip marker. 

E. Intel® Omni-Path Traffic Flow Optimization (TFO) and 

Interleave 

The Link Transport Layer permits FLITs from different 
packets on different VLs to be interleaved within and across 
LTPs when they are sent across the link. This allows both higher 
link utilization, and lower latency for high priority packets. A 
FP using a high priority VL arriving at the link egress point can 
preempt an in-progress FP in order to minimize the latency of 
the high priority FP. Transmission of the in-progress FP is 
suspended to allow transmission of the high priority packet.  
Once the high priority FP is transmitted the suspended packet 
resumes. A low priority FP can be preempted multiple times at 
an individual link egress point. The link egress point monitors 
the total amount of time that a low priority FP is delayed by 
preemption by multiple high priority FPs, and allows the  low 
priority FP to complete if a limit, configured by the fabric 
manager, is exceeded.  Bubbles in a FP are defined as the lack 
of available FLITS for the in-progress FP, or underrun, at the 
link egress point. If a sending FP for whatever reason is 
interrupted by bubbles, FLITS from a second packet can utilize 
the channel instead of propagating Idles on the channel.  In this 
case the substituted packet can be of equal or lower priority. 
When FLITS are again available for first packet the link egress 
point can return to transmitting the first packet, or wait until the 
completion of the second packet. 

F. Virtual Lane Credit Management 

The transmit side of the link is informed of the total physical 
buffer space (in FLITs) on the partner as part of the link 
initialization process. The receive side treats the space as a 
single pool for all VLs. The transmit side manages this space on 
a per VL basis. Up to 31 FP VLs are supported in addition to a 
single management VL. A dedicated space is maintained for 
each VL as well as a shared space for all VLs. The ratio of fixed 
to shared space and the dedicated per VL space size can be 
adjusted dynamically by the fabric manager.  Per VL 
incremental acknowledgements are returned in units of 8 FLITs 
as FLITs are removed from the buffer pool for a particular VL. 
These acknowledgements travel over the link in the 2 bit VL 
credit field in each LTP. 2 bits from 4 sequential LTPs are 
aggregated into an 8 bit field which is used to indicate the VL 
and number of 8 FLIT units being returned. There are also 
optional Command FLITs that can be used to return VL credits 
across the link. The 2 bit VL LTP credit field and the Command 
FLITs are retransmitted during retry sequences such that no 
incremental VC credits are lost when a link error occurs. 

IV. LAYER 2: LINK LAYER 

The Intel OPA Link Layer (Layer 2) is designed for large 
scale systems.  Layer 2 fabric packets enable 24-bit fabric 
addresses, as well as optimized formats for smaller systems. Up 
to 10KB of payload can be carried in a fabric packet after 
accounting for the largest Transport Layer header. Service 
Channels (SCs) and Virtual Lanes (VLs) provide the building 



blocks to enable support for a broad class of topologies as well 
as the implementation of Quality of Service (QoS) features.   

A. Quality of Service Support 

Within OPA, Quality of Service (QoS) features provide a 
number of capabilities, among them: job separation/resource 
allocation; service separation/resource allocation; application 
traffic separation within a given job; protocol (eg. 
request/response) deadlock avoidance;  fabric deadlock 
avoidance;  traffic prioritization and bandwidth allocation; and 
latency jitter optimization by allowing traffic preemption 

The Intel OPA provides a very flexible capability for QoS 
via Virtual Fabrics (vFabrics), Traffic Classes (TCs), Service 
Levels, (SLs), Service Channels (SCs) and Virtual Lanes (VLs). 
At the heart of QoS is the SC mechanism which is used to 
differentiate fabric packets within the fabric. In order to support 
a wide variety of fabric topologies and configurations, SC 
assignments are managed by the fabric manager and the SC of a 
given fabric packet may change as it traverses the fabric to 
routing dependent deadlock. 

The application and sysadmin operations are centered 
around vFabrics. A vFabric is the intersection of a set of fabric 
ports and one or more application protocols. For each vFabric a 
set of QoS and security policies are established by the sysadmin. 
A given vFabric is associated with a Traffic Class for QoS and 
a Partition for security. 

A Traffic Class represents a group of SLs that a given 
Transport Layer or application will use. Some Transport Layers 
may use multiple QoS levels to avoid deadlock (such as 
separating request and response in certain protocols), while 
others may take advantage of multiple QoS levels to separate 
high priority control traffic from lower priority data traffic. 
Transport layers may simply associate a traffic class with a 
single SL. The Intel OPA allows up to 32 Traffic Classes, but 4 
to 8 is expected to be a more typical configuration. Traffic 
Classes are realized through the end to end concept of a Service 
Level. Traffic Classes may span multiple Service Levels, but a 
Service Level may be assigned to only one Traffic Class. Intel 
OPA will support up to 32 Service Levels, but 4 to 8 is expected 
to be a more typical configuration. Service Levels are the lowest 
layer QoS concept visible to OPA Layer 4 protocols and 
applications. 

Underlying Service Levels are Service Channels (SCs), 
which differentiate packets of different Service Levels as they 
pass through the fabric. The SC is the only QoS identifier 
contained in the fabric packets, which reduces packet overhead. 
In some fabric topologies, Service Levels may span multiple 
Service Channels, but a Service Channel may be assigned to 
only one Service Level. The Intel OPA supports  32 SCs; 
however, SC15 is dedicated to in-band fabric management. 

In each endpoint Service levels are mapped to SCs via 
SL2SC tables at transmission (mapping each SL to an SC), and 
SC2SL tables (mapping inbound SCs to a given SL with perhaps 
multiple SCs mapped to the same SL). 

Fig. 2 shows an example usage of TC, SL and SC. In this 
example we see two HFI endpoints connected via an 8 switch 
hop route through the fabric. Two TCs are used, one for a 

request/response protocol (e.g. PGAS) assigned to TC0, and one 
for storage assigned to TC1. The request/response protocol on 
TC0 requires two SLs (SL0 and SL1), while the storage protocol 
on TC1 only requires a single SL (SL2). Each SL is assigned a 
pair of SCs (SC0/SC1, SC2/SC3 or SC4/SC5) for topology 
deadlock avoidance in the fabric, such as what is typically used 
in a torus topology. As the packets traverse the fabric, the SC 
may change link by link, however, the SL and TC seen by Layer 
4 and the application is consistent end to end.  

Within a given Link, Service Channels are assigned to 
Virtual Lanes (VLs). VLs provide dedicated receive buffers for 
incoming Fabric Packets. VLs are also used for resolving 
routing deadlocks. The Intel OPA supports up to 32 VLs, though 
the actual number supported will be implementation-dependent. 
The Intel OPA supports mapping SCs onto VLs, such that 
heterogeneous fabric configurations can be supported. SC15 is 
always mapped to VL15 for in-band fabric management. 
Individual implementations may choose to support fewer than 
32 VLs or may be configured to optimize the amount of 
buffering per VL by reducing the overall number of VLs 
available.  

 

Figure 2: Example of Traffic Class (TC), Service Level (SL), and Service 

Class (SC) usage in a topology with credit loop avoidance 

 
Each SC carries traffic of a single service level in a single 

traffic class, and the fabric manager configures how SCs map 
onto the VL resources at each port.  The large number of SCs 
helps maintain performance at high levels of utilization, and  
mapping a Service Channel to an independent VL can provide 
an independent channel through the fabric. Thus, Intel OPA 
makes extensive use of Service Channels (SC) to avoid routing 
and protocol deadlocks and to avoid head of line blocking 
between traffic classes.  However, practical constraints may 
cause any given implementation to support a smaller number of 
VLs on one oe more links.  In these cases, multiple SCs may 
share a VL, and the fabric manager is responsible for 
configuring which SCs can correctly share a VL and how SCs 
share VLs so that QoS characteristics can be honored. 

The fabric manager also configures how the transmission of 
packets across a Virtual Lane is scheduled via a configurable 
VLArbitration algorithm.  In addition, packet preemption can be 
configured to permit a higher priority traffic to preempt a lower 
priority packet. This provides further reductions in head of line 
blocking for high priority traffic. 

B. Congestion Management 

Intel OPA takes a multi-faceted approach to managing 
congestion. Both medium grained adaptive routing and 
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dispersive routing  provide load balancing to avoid hot spots in 
the fabric.  Medium Grained Adaptive routing identifies 
congested inter switch links and dynamically adjusts the routing 
of traffic to better utilize other links in the fabric. To minimize 
the impact on transport layers which are not prepared for highly 
out of order packet delivery, this mechanism limits its frequency 
of adjustment. 

In turn, dispersive routing probabilistically distributes traffic 
across multiple routes through the fabric or even across multiple 
virtual lanes within a single route. Dispersive routing makes use 
of multipathing, which allows multiple paths to be defined 
between a pair of endpoints so that a source can spread its traffic 
across the multiple paths. This reduces the formation of hot spots 
in the fabric which can result from unbalanced traffic patterns. 
There is no ordering defined across packets that use different 
paths. Where ordering is required between a pair of packets the 
source must send the packets on the same path, or use other 
mechanisms to guarantee ordering or recover from out of order 
delivery. The Intel OPA does not specify how endpoints choose 
which path to use for a given packet. Endpoints may use any of 
the available paths as long as they maintain their own ordering 
requirements. 

When these techniques work well, they avoid congestion at 
intermediate points in the fabric by balancing utilization across 
all links for traffic patterns which do not oversubscribe any 
endpoints.  However, some traffic patterns do oversubscribe 
some endpoints. In these cases, many sources are sending to a 
single destination endpoint at a rate that exceeds the bandwidth 
of the link to the destination endpoint. This traffic pattern can 
cause congestion trees to form as queues fill throughout the 
fabric due to the destination asserting link level flow control. 
Congestion trees are not an inherent problem; however, they 
often block the progress of packets flowing to an uncongested 
destination. The Intel OPA defines an explicit congestion 
notification protocol that marks packets passing through 
congested switch ports. When the packet reaches its destination 
a backward notification is returned to the source to cause the 
source to reduce the bandwidth of packets to that destination. 
This can permit better fairness for all senders as well as reduce 
the impact on other flows that may be sharing the same VLs on 
the same links as the congested flows. Over time the source will 
gradually begin to increase bandwidth, and either explicit 
congestion notification will cause it to continue running at a 
reduced bandwidth or it will return to full bandwidth. 

C. Partitions 

Partitions are an isolation mechanism that operate at the Link 
Layer (Layer 2), with every Fabric packet being associated with 
a single partition..  A partition provides isolation to the group of 
endpoints that are members of the partition for all types of traffic 
(i.e. all Transpor Layers); however, this does not prevent a 
Transport Layer from providing finer grained security 
mechanisms. A partition in an Intel OPA fabric contains a group 
of Intel OPA endpoints. Communication is allowed within the 
partition, and is prevented with endpoints that are not in the 
partition. This allows partitions to be used to provide isolation 
between applications running on a fabric or between users on a 
fabric. 

Individual endpoints may be identified as a full or limited 
member of a given partition. Full members are permitted to 
communicate with any member of the partition, but limited 
members are only permitted to communicate with full members. 
This mechanism permits the fabric to have shared services, such 
as management or a common global file system, while 
preserving isolation between non-service partitions.  Such 
services often require all end points to be members of the 
partition for that shared service. By making the providers of the 
shared service full members and the clients limited members, 
clients may access the service while still preventing clients from 
communicating directly to each other. 

Each endpoint is a member of at least the management 
partition, and may be a member of multiple partitions. A typical 
endpoint will be a member of at least one application partition.  
When a Host node has multiple endpoints, each endpoint may 
have membership in different partitions. There are no 
architectural restrictions regarding which endpoints may be 
members of which partitions. For example, partitions may 
overlap and partitions need not be related to the physical 
topology of the fabric. 

Partition security is enforced in the edge port of the switch 
connected to the HFI. The security mechanisms ensure that a 
source injects packets only into partitions of which it is a 
member, and the packets are delivered only to endpoints in the 
same partition.  

Partitions are created and managed by the Fabric Manager. 
It initializes the registers and tables used to enforce partition 
security and modifies them as partitions are redefined. Software 
running on the Host Nodes does not control the partition security 
registers and tables. 

V. LAYER 4 AND KEY SOFTWARE COMPONENTS 

Multiple Layer 4 (Transport Layer) definitions can be 
encapsulated within the Layer 2 packets.  These Transport 
Layers are optimized around common HPC and datacenter 
usage models, and are responsible for carrying the user facing 
semantics and providing the end-to-end portion of the reliability 
definition.  All current Transport Layer definitions provide an 
invariant CRC (ICRC) on each packet that covers Layer 2 and 
Layer 4 header fields. On packet loss or corruption, an end-to-
end protocol will retransmit the packets.  Software layers are 
then provided over the Transport Layer to provide the network 
API to the user.  Three key software layers include PSM, OFED 
Verbs, and the OpenFabrics Alliance (OFA) Open Fabrics 
Interface (OFI). 

A. Performance Scaled Messaging 

Performance Scaled Messaging (PSM) is a user-level library 
that provides a reliable fabric transport Application 
Programming Interface (API) for the Intel® Omni-Path HFI. 
The PSM API provides a matched queue (MQ) semantic that is 
a building block for MPI tag-matching send and receive calls. 
The PSM API has been extended for the Omni-Path architecture 
to provide 96 bits of tag matching to support up to 32 bits of user 
tag, up to 32 bits of source rank information and up to 32 bits of 
communicator context. This allows for significant scaling 
beyond the 64 bits of tag provided by the previous PSM 
implementation. The message-passing primitives provided by 



PSM are point-to-point. The PSM implementation is designed 
to scale to the order of millions of MPI ranks. 

Collective MPI operations can be synthesized from the 
point-to-point send and receive primitives using optimized 
algorithms that can be selected by parameters such as message 
size, collective communicator size and topology. Additionally, 
PSM provides an active messages (AM) API that can be used to 
implement arbitrary communication protocols using the active 
messages paradigm. This is used to implement a PGAS 
programming model using the OpenSHMEM API running over 
a GasNET conduit. 

B. OFED Verbs and Compatibility 

The Intel® Omni-Path HFI supports a fully compliant Verbs 
implementation. This includes support for UD, UC and RC 
queue pairs. Shared receive queues (SRQ) are also supported. 
The standard user-level and kernel-level Verbs library interfaces 
are provided. All standard Verbs management and performance 
protocols are supported. In addition to the 2KB and 4KB packet 
Maximum Transfer Unit (MTU) sizes supported in InfiniBand, 
the Intel OPA introduces an 8KB MTU which can be used by a 
Verbs implementation to reduce the required packet rate for 
large messages.  

C. OFA Open Fabric Interface 

The Open Fabrics Interface (OFI)  [4] provides a general 
purpose software framework that is capable of handling a variety 
of fabric hardware and provides a standardized set of 
communication operations to higher code layers.  The 
framework provides a library called libfabric that user-level 
applications can link to.  

D. Leveraging Existing Ecosystems and Software 

The host software stack integrates into the existing Open 
Fabrics Alliance software stack and into existing software 
distributions such as RHEL, SLES and OFED. The standard 
suite of fabric protocols and APIs are fully supported. This 
ensures that the investment in host software middleware and 
applications is preserved. 

VI. FIRST GENERATION IMPLEMENTATION 

The first generation implementation of Intel OPA has been 
announced for introduction later this year.  The first generation 
of products uses a physical layer that leverages industry standard 
link speeds for 100 Gigabit Ethernet and EDR InfiniBand (4 
lanes of 25.78125) to yield 100 Gb/s (12.5 GB/s) of bandwidth 
available for Link Layer packets after the overhead required by 
the Link Transfer Layer for reliability. 

A. Intel® Omni-Path HFI Product Architecture 

The Intel® Omni-Path HFI is connected to the host system 
by a PCI Express (PCIe) 3.0 compliant port that supports a 
maximum link speed of 8GT/s and a link width of up to 16 lanes. 
This gives a maximum host bandwidth of 15.75GB/s in each 
direction after factoring out the 128b130b encoding. The HFI is 
connected to the fabric by one Intel® Omni-Path Architecture 
compliant fabric. The application-specific integrated circuit 
(ASIC) implementation provides one or two such HFIs in a 
single package. The ASIC with two HFIs has two logically 
independent HFIs with separate PCI-e ports, fabric ports, data 

paths, memory and control logic, and with shared ASIC level 
infrastructure for power, clock, ASIC reset, low-level 
control/management and some shared pins. The maximum 
available fabric bandwidth for two HFIs using both directions of 
the fabric link is 50GB/s. The ASIC can be used in a variety of 
product configurations including standard form factor PCIe 
cards, custom mezzanine card form factors, LAN on 
Motherboard (LOM) solutions, and integrated into the processor 
package. 

The HFI partitions the layer 4 transport function between the 
HFI hardware and the host software stack. In addition to typical 
Link Layer offloads (e.g. packet formation and CRC 
generation), the hardware provides targeted offloads to 
accelerate typical per-packet transport layer capabilities and 
reduce software overhead. In turn, the software on-load 
component is responsible for higher level transport protocol 
functionality including maintaining connection state, mapping 
message-level transactions to packet sequences, and the end-to-
end reliability protocol. 

Host software can select between two send mechanisms 
provided by the hardware. Short messages use the Programmed 
Input/Output (PIO) Send mechanism to minimize latency. A 
large PIO send buffer is dynamically partitioned into contexts 
that are mapped for direct user mode application access.  
Sufficient contexts are provided to support the large core counts 
on the next generation of Intel® Xeon Phi™ processors.  Each 
context provides a memory mapped FIFO that is used to 
generate a flow-controlled stream of packets to the link. Host 
software writes data directly into the send context to generate 
the packet on the fabric.  

For longer messages, typically consisting of multiple 
packets, the Send Direct memory Access (SDMA) mechanism 
is used. Each SDMA engine processes an independent 
descriptor queue held in host memory, and host software 
appends descriptors to these queues. Taking the CPU core out of 
the data movement path allows the SDMA mechanism to 
achieve higher bandwidth and reduced CPU overhead. 
Additionally, there is an Automatic Header Generation (AHG) 
feature that allows hardware to generate headers for a stream of 
packets based on update information held in the descriptors to 
reduce the overhead of descriptor creation. Hardware arbitrates 
across all the packet sources, arbitrates for VL resources and 
link-level credits, performs packet header integrity checking, 
and finally egresses to the link. 

The receive hardware provides a matching number of 
receive contexts to enable packets to be directly delivered to a 
user process. A variety of mapping algorithms are provided 
including the receive context number being specified directly in 
a packet header field, a lookup table based on the Queue Pair 
Number (QPN) packet field, and a programmable mapping 
based on hashes of arbitrary header fields called Receive Side 
Mapping (RSM). The receive side of the HFI provides eager 
receive and rendezvous receive capabilities for short and long 
messages, respectively. Host software chooses between the 
protocols for a given message. Eager provides lowest latency 
and highest message rate by delivering packets to FIFO ring 
buffers in host memory. Payloads are subsequently consumed 
by host software, typically involving a memory copy to the final 



packet destination. Rendezvous is used for long messages, and 
achieves direct data placement to give the best bandwidth and 
reduced CPU utilization. The rendezvous protocol uses Token 
Identifier (TID) values so that destination memory can be pre-
registered on the receive side, and then the send side generates 
packets with the allocated TID values to select the appropriate 
mapping for direct data placement. An additional mechanism 
allows for header sequence numbers to be checked in hardware 
to significantly reduce the number of Transport Layer packet 
headers that have to be delivered to software for processing. 
Packet arrival can be determined by polling on header status in 
host memory, or using a coalesced interrupt scheme. 

B. Intel® Omni-Path HFI Software Implementation 

1) Performance Scaled Messaging 
In the PSM library, short message send and receive is 

implemented using direct access to the send context and receive 
context giving low latency and high message rate. PSM actively 
polls on the receive side for arriving packets to eliminate host 
interrupt overheads. PSM accesses the SDMA and expected 
receive protocol mechanisms using system calls into the host 
driver. This allows the driver to pin host memory pages for I/O 
DMA, and to register the physical pages into the HFI. A 
registration caching scheme is used to reduce the overheads on 
the receive side in the typical case where there is significant 
reuse of destination memory buffers at the MPI application 
level. 

For each connection between a PSM sender and a PSM 
receiver, state is required to hold identification, status, 
sequencing and control information. This is termed connection 
state or flow state, and the size of this is denoted B (in bytes). 
The Intel® Omni-Path HFI architecture holds no connection 
state in the HFI. This means that there are no hardware capacity, 
caching or scaling limits as the size of the cluster increases. 
Instead all such connection state is held in the host and benefits 
from the host memory capacity, cache capacity and bandwidth 
available in the host memory system. 

2) OFA Verbs 
The implementation is partitioned between hardware 

capability in the HFI and host software. The hardware 
capabilities include the PIO send contexts, SDMA engines and 
AHG feature on the send side. Under driver control some portion 
of the PIO send contexts are set aside for driver use for Verbs 
protocols and these are typically used for small messages and 
for Verbs ACKs. Some or all of the SDMA engines are used for 
large message transfers for Verbs transactions. On the receive 
side the incoming Verbs protocol packets are spread across 
receive contexts and CPU cores using lower order bits from the 
QPN value and a mapping table. Interrupt coalescing is used to 
moderate the host interrupt rate without overly delaying 
incoming packets that are latency sensitive. These features allow 
the Verbs performance to scale as more CPU core resources are 
assigned to running the Verbs protocol code. 

3) OFA OFI 
The communication operations of libfabric are layered on 

top of the APIs mentioned in the previous sections. The message 
queue and tagged message queue operations are layered on PSM 
MQ, and collectives can be synthesized in terms of PSM MQ 
operations. Put, get, atomics and other operations designed to 

support PGAS or MPI3 RMA operations are layered on top of 
PSM AM implementation. Verbs is available through the 
standard Verbs access libraries. 

C. Switch Product Architecture 

The first implementation of an Intel OPA switch is a 
monolithic ASIC with 48 ports, each with 100 Gbps (nominal) 
links, including integrated long-reach serializer-deserializers 
(SERDES).  Each ports supports 8 user VLs (plus one VL for 
fabric management).  As shown in Fig. 3, the internal 
architecture is based on a bandwidth over-provisioned 
hierarchical crossbar, in which 4-ports comprise an MPort, with 
a local crossbar. The 12 Mports are connected via a central 
crossbar.  Switching decisions are based on 48K (logical) entry 
unicast route table (URT), as well as a 16K multicast route table 
(MRT).  URTs are replicated per Mport to provide adequate 
address lookup bandwidth.   Arbitration logic supports packet 
pre-emption as well as per VL bandwidth metering. An on-chip 
microcontroller (MCU) translates high level management 
commands, transmitted via the Cport (port 0 of the switch) into 
low level hardware accesses required to manage on-chip 
resources.  In addition, an external PCIe port is provided to allow 
an external CPU to directly manage the switch.  An I2C interface 
provides access to off-chip electrically erasable programmable 
read only memory (EEPROM) and connectivity to baseboard 
management devices. 

 

Figure 3:Intel OPA 48-Port Switch Block Diagram 

D. Reliability Implementation 

Data integrity and reliability is achieved at multiple levels. 
The fabric links are protected by link-level CRC with a link-
level retry mechanism. The HFI and switch hardware paths are 
protected by error correcting code (ECC) and parity. End-to-end 
packet integrity is provided by a 32-bit invariant ICRC that is 
generated and validated in hardware. Packet sequence numbers 
(PSNs) are used to detect missing, duplicated and reordered 
packets. The standard 24-bit PSNs are expanded to 31 bits to 
give improved robustness for excessive delays in the fabric that 
could otherwise potentially lead to sequence number roll-over in 
extreme scenarios. Recovery mechanisms are implemented in 
host software using time-out and retry techniques. 
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E. Preliminary Performance Results 

The HFI and switch implementations maximize the 
utilization of the high efficiency links through architecture 
improvements.  First generation Intel OPA ASIC-level 
performance metrics relative to Intel True Scale are shown in 
Table I.  The HFI takes full advantage of  the host IO interface,  
achieving a factor of 4.6 improvement over Intel True Scale in 
small message rate performance.   Switch message rates are also 
improved by a similar factor through optimizing internal 
pipelines to deliver maximum line rate for 64B packets.  Switch 
latency under idle conditions is reduced by a significant  65ns 
(switch latency range indicates a second-order dependency on 
the choice of ports). 

TABLE I.  FIRST GENERATION INTEL OPA COMPARED TO INTEL TRUE 

SCALE 

 
Intel 

 True Scale 
Intel OPA 

SERDES Rate (Gbps) 10  25.78  

Peak Port Bandwidth (Gbps) 32  100  

HFI Message Rate (Million 

Messages per second) 
35 160  

Switch Ports 36 48 

Switch Packet Rate (Million 

Packets per Second) 
42 195 

Switch Latency (ns) 165-175  100-110  

 

VII. RELATED WORK 

The Intel OPA is directly related to the Cray Aries  [2] and 
Intel True Scale  [1] and other InfiniBand  [6] architectures.  In 
many ways, the Intel OPA is an evolution of architectural 
features leveraging the best practices. In other ways, Intel OPA 
introduces significant new functionality,  including :  

An extensible, open, high performance API framework in PSM, 

and more recently, OFA OFI that is amenable to creating a low-

impedance interface between evolving HPC middleware (e.g. 

MPI), and the HFI hardware/software interface [9] (for 

example, in the first generation HFI, this has resulted in low 

latency, high bandwidth implementation which on-loads 

portions of the fabric protocol on processor CPU, memory, and 

cache resources.  Intel® Xeon® processor and Intel® Xeon 

Phi™ processor products based on high numbers of cores, and 

high performance memory systems); Service Level, and 

Service Channel extensions to Virtual Lane abstraction which 

enable efficient allocation of  HFI an switch resources; and a 

Link Transfer Protocol layer in the network stack which enables 

pre-empting of low priority packets by higher priority packets, 

enabling efficient bulk transfer using extended (8K) MTU 

sizes, while simultaneously reducing latency jitter seen in 

tightly coupled (e.g. MPI) communication.  

VIII. CONCLUSIONS 

The Intel Omni-Path Architecture (OPA) introduces a multi-
generation fabric architecture designed to meet the scalability 

needs of datacenters ranging from the high-end of HPC to the 
breadth of commercial datacenters.  Link level reliability and 
pervasive ECC enable the reliability needed for large scale 
systems.  The QoS architecture is coupled with new packet 
preemption capabilities to enable both bandwidth fairness and 
low latency jitter for high priority packets.  The first 
implementation silicon is available, and initial performance 
measurements are promising.  Each link provides 100 Gb/s of 
bandwidth, and each HFI can achieve 160 million messages per 
second.  Switch latency has been reduced to under 110 ns.  These 
are substantial improvements relative to prior generation 
products while preserving the existing software ecosystem. In 
addition, a new community standard network API – OFA OFI - 
is in development that is designed to match user level semantic 
requirements to enable hardware innovation beneath the API. 
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