Using Intel” oneAPI
Toolkits with FPGAS

Copyright © 2021 Intel Corporation.

This document is intended for personal use only.

Unauthorized distribution, modification, public performance,
In e ® public display, or copying of this material via any medium is strictly prohibited.

Course Objectives

» Understand the development flow for FPGAs with the Intel® oneAPI
toolkits

» Gain an understanding of common optimization methods for FPGASs

Copyright ® 2021 Intel Corporation intel.

Course Agenda

» Using FPGASs with the Intel®
oneAP| Toolkits

* Introduction to oneAP!|
* Introduction to DPC++

* What are FPGAs and Why Should |
Care About Programming Them?

* Development Flow for Using FPGAS
with the Intel® oneAPI Toolkits

* Lab: Practice the FPGA
Development Flow

Copyright © 2021 Intel Corporation

» Optimizing Your Code for
FPGAS

* Introduction to Optimizing FPGAS
with the Intel oneAPI Toolkits

* Lab: Optimizing the Hough
Transform Kernel

intel.

3

Exact Timeline of This Class

Let’s now look at the exact timeline for this class

(S0, you can plan important things like lunch!)

Copyright ® 2021 Intel Corporation intel.

Sub-Topics:

O = |ntroduction to oneAPI
Section: = Introduction to DPC++
: ' * What are FPGAs and Why
Usmg FP®GAS with Should | Care About
the Intel® oneAP! Drogramming Them?
oolkits » Development Flow for Using
FPGASs with the Intel® oneAPI
Toolkits

Copyright © 2021 Intel Corporation

intel s

Advantages of Heterogeneous Computing

Multiple Architectures

Developers can optimize specialized inline and offload workloads to meet business needs.

» Strengths of individual xPUs (CPU, GPU, FPGAs, etc.) can be combined for the benefit of the overall system.

Memory
Performance/Watt Throughput Latency 1O Flexibility Bandwidth Architecture

v (7

Copyright ® 2021 Intel Corporation intel.

6

Diverse Workloads Require

Diverse Architectures

The future is a diverse mix of scalar,

vector, matrix, and spatial architectures

deployed in CPU, GPU, Al, FPGA and other
accelerators

SCALAR VECTOR ~ MATRIX SPATIAL

G J

Y

SUMS

Copyright © 2021 Intel Corporation |nte|® 7

Programming Challenges

for Multiple Architectures

Separate programming models and toolchains for each architecture.

* Required training and licensing — compiler, IDE, debugger,
analytics/monitoring tool, deployment tool, et al. — per architecture.

« Challenging experience in debug, monitoring, and maintenance of a
cross-architectural source code.

 Difficult integration across proprietary IPs and architectures and no
code re-use.

Software development complexity limits freedom of architectural choice.

 |solated investments required for technical expertise to overcome
the barrier-to-entry.

Copyright © 2021 Intel Corporation

Application Workloads Need Diverse Hardware

? [[[[[
Q [o [
0 [o [

% [o [

O0oo0od

Scalar Vector Spatial Matrix

Middleware & Frameworks

-,
5

" TensorFlow @xnet NZ# NumPy

PyTorch G X...

CPU GPU FPGA Other accel.
programming programming programming programming
model model model models

Other accel.

intel.

A Unified Programming Model

Multiple Architectures

The oneAPI product delivers a unified programming
model to simplify development across diverse
architectures.

It guarantees:

= Common developer experience across Scalar, Vector,
Matrix and Spatial architectures (CPU, GPU, Al and
FPGA)

» Uncompromised native high-level language
performance

» |ndustry standardization and open specifications

Copyright © 2021 Intel Corporation

i

oneAPI

intel.

9

Intel® oneAP| Product

emulation and reports.
» Runtime analysis via VTune™ Profiler

« Complex hardware patterns implemented
through built-in language features: macros,
pragmas, headers

Faster
Development

« Code re-use across architectures and
vendors.

« Compatible with existing high-
performance languages.

Extensible
Code

Reduced « Leverage familiar sequential programming

Barrier of languages: improved ramp-up and debug
Entry time.

« IDE Integration: Eclipse, VS, VS Code

Copyright © 2021 Intel Corporation

« Performance tuning and timing closure through

Application Workloads Need Diverse Hardware

Middleware & Frameworks

F TensorFlow

PyTorch @xnet @ N#NmpPy X.. ©OpenVIN®

Intel® oneAPI
on;API PrOduct

Compatibility
Tool

Analysis &

Libraries B ool

Languages

Low-Level Hardware Interface

Available Now

intel.

10

software.intel.com/oneapi

Intel® oneAPI| Base Toolkit for FPGAS

Optimized Middleware & Frameworks

Optimized Applications

oneAPI Product

Direct Programming API-Based Programming

Analysis &

Data Parallel C++ Libraries Debug
Tools

Scalar Vector Matrix Spatial

Direct Programming: Data Parallel C++

ISO C++

Source
COd e Khronos SYCL Specification

I+I

I+

Community Extensions

Copyright © 2021 Intel Corporation

oneAPI Product

Direct Programming

Analysis &

Debug Tools
Data Parallel C++

Intel® oneAPI DPC++/C++ Compiler

Clang/LLVM Front end

DPC++ Runtime

intel.

11

SYCL and oneAPI Product Ecosystem

SYCL
Source Code

£ XILINX. L

ComputeCpp TriSYCL hipSYCL

B, Uses LLVM/clang SYCL 1.2.10n Open source SYCL 1.2.1 on
oneAPI Part of oneAPI multiple hardware test bed CUDA & HIP/ROCm

OpenMP
Any CPU NVIDIA GPUs

CUDA+PTX Any CPU OpenCL+PT.
NVIDIA GPUs NVIDIA GPUs

Any CPU

- ..
omar omat
. SPIR(-V) SPIR/LLVM AMD GPUs
&r Intel CPUs &r Intel CPUs " XILINX FPGAs
Intel GPUs Intel GPUs POCL
Intel FPGAs Intel FPGAs D (s ey e
AMD GPUs
(depends on driver stack) m
Arm Mali
IMG PowerVR

Renesas R-Car

oneAPI Ecosystem Support

P nswesore (AlbabaCioud allegroai Argonne & @[[:hanaﬂ ,‘gfp);‘I‘\;I"!Tﬁ'§ AtoeS BE‘E{’“

TEIRFA

CINECA @;‘

“%} Gouasmces A= O GoogeClowa

~ GeoEast

BittWware o sighisiies canenical [dlcee 5 openlab © codeplay’

(:..

SexmEm .3
Sexmmy DL rounory. =

1R7) Hecesss vy m % ILLINOIS & " 2 (odene 4
B e (@) mweas pumos Lo Pree a0 aKkl i

Enterprise WSER PR e

@ QFMEGH Growme BN TENIAC TN sawswomeson §Sas ESEEEY

ZUSE i
UNITED X = sTruTe Bl
F TensorFlow Tencent #i arEDNE §5 wstrure

UNIVERSITY ‘ '
OF ‘t

N 3 TANGENT

) o
9 4)

CAMBRIDGE

tockholm

Bens Gurion Univerity
of the Negev S)
University

Source: https://www.khronos.org/sycl/

Copyright © 2021 Intel Corporation

intel.

12

https://www.khronos.org/sycl/

Intel® FPGASs + Intel® oneAPI| Toolkits

» Data-dependent parallelism

Spatial « Streaming and graph processing
Architecture patterns

» Low and deterministic latency

« Customizable network
interfaces and protocols

» Customizable memory architecture

« Distributed, high bandwidth, on-
chip memory topology

Copyright © 2021 Intel Corporation

oneAPI Product

Direct Programming

Data Parallel C++

Analysis &
Debug Tools

intel.

13

Getting Started with oneAPI on an FPGA

1/O Memory Interfac
Pre-Compiled BSP

j""‘"T

intel.

FPGA Add-On'fer

+ oneAP| +

Base Toolkit

oneAPI

BASE TOOLKIT

Intel® oneAPI Base Toolkit Intel® FPGA Add-on for oneAPI Board Support Package (BSP)
Base Toolkit

Note: Developers using custom platforms should download the Intel® FPGA Add-on for Intel® Custom
Platforms with the respective Intel® Quartus® version and obtain a BSP from their 3" part platform vendor.

Copyright ® 2021 Intel Corporation intel. 14

https://software.intel.com/content/www/us/en/develop/articles/oneapi-standalone-components.html#fpga

Sub-Topics:

O = Introduction to oneAPI
Section: = |ntroduction to DPC++
: ' * What are FPGAs and Why
Usmg FP®GAS with Should | Care About
the Intel® oneAP! Drogramming Them?
oolkits » Development Flow for Using
FPGASs with the Intel® oneAPI
Toolkits

Copyright © 2021 Intel Corporation

intel. s

Data Parallel C++ (DPC++)

» Based on C++ and SYCL = Common language meant to
* SYCL is based on OpenCL target all XPUs
* Think of it as SYCL + extensions * You do still need to “tune”

" Allows for single-source = Goal is for the language to
targeting of accelerators incorporate everything needed
* (Doesn't require multiple files) to get the best performance out

of every architecture

* Open specification

Copyright ® 2021 Intel Corporation intel.

16

DPC++: Three Scopes

» DPC++ Programs consist of 3 scopes:
» Application scope - Normal host code

« Command group scope - Submitting data
and commands that are for the accelerator

» Kernel scope — Code executed on the
accelerator

* The full capabilities of C++ are
available at application and command
group scope

= At kernel scope there are limitations in
accepted C++

« Most important is no recursive code
* See SYCL specification for complete list

Copyright © 2021 Intel Corporation

intel.

17

The “Runtime”

» The DPC++/SYCL runtime is the program running in the background
to control the execution and data passing needs of the
heterogeneous compute execution

= [t handles:

» Kernel and host execution in an order imposed by data dependency needs
(discussed later)

» Passing data back and forth between the host and device
* Querying the device
* EtcC.

Copyright ® 2021 Intel Corporation intel. 18

A Note About Lambda Functions

= Two common constructs in DPC++: (1) Queue submissions and (2) kernel
dispatch functions take function pointers as arguments

* This doesn't lend itself to simple, in-line code

» To write examples that are short and simple, we use Lambda functions
= Lambda functions are un-named functions used in-line with other code
* [f you are not familiar with them, here is a simple guide

What you want to have [captureClause] (parameters) {

What the function needs
access to when it's done /stateme nts; \ ccess to. This can be an
executing }

object like “handler &h" if
you need access to

member functions of
Normal statements for that object.

[=] means everything,
pass by value
[&] means everything,

functionality like in any
pass by reference

C++ function Final note: If you'd rather not use lamdas &
wrap everything in normal functions and
point to those in your own code, that's fine!

Copyright © 2021 Intel Corporation

intel.

19

DPC++ Class: device

» The device class represents the accelerators in a oneAP| system

* The device class contains member functions for querying information
about the device

* The function get _info gives information about the device:

 Name, vendor, and version of the device
« Width for built in types, clock frequency, cache width and sizes, online or offline

// Get all of the devices a system is capable of operating

std::vector<device> my_devices = device::get devices();

// Grab the first device to print info out for

device my _device = my devices[O];

// Print the name of the first device

std::cout << "Device: " << my_device.get info<info::device::name>() << std::endl;

Copyright ® 2021 Intel Corporation intel. 20

DPC++ Class: device selector

* The device selector enables
the selection of a device to
execute kernels on

= Use the selector when you
create a queue (covered next)

* The code sample shows use of
several example device
selectors, including an FPGA

Copyright © 2021 Intel Corporation

// Other example selectors that are not FPGAs
// default selector selector;

// host selector selector;

// cpu_selector selector;

// gpu_selector selector;

// Create the selector as an fpga_selector type
INTEL: :fpga_selector selector;

// Use the selector when you create a queue
queue q(selector);

intel.

21

DPC++ Class: queue

= A gueue is a mechanism where work is submitted to a device

= A queue submits command groups to be executed by the SYCL runtime

» A queue.submit() is the beginning of the command scope

* Groups of work to be executed by the SYCL runtime on an accelerator

= A queue maps to a single device

The handler is a class that contains all of the
command group functions of SYCL

// Declare a queue to a device
queue q(selector); You can think of it as an abstraction of the runtime

This keeps us from having to type handler:: again and
again in the command group scope

// Submit thingslto the queue
g.submit([&](handler& h) {
// COMMAND GROUP CODE

})s

Copyright © 2021 Intel Corporation

intel.

22

DPC++ Class: kernel

* The kernel encapsulates code that will be run on the accelerator

= A kernel object is not explicitly constructed by the user

* |[tis constructed when a kernel dispatch function, such as

parallel for() or single task() is called

Copyright © 2021 Intel Corporation

g.submit([&](handler& h) {

// The “kernel” is everything after the kernel dispatch function
h.single task<VectorAdd>([=]() {

// Everything inside here is “KERNEL SCOPE”
for (int i = 0; i < kSize; ++i) {
c[i] = a[i] + b[i];
}
1)

intel.

23

Single Task Kernels

= single task() kernels allow complex or
lengthy datapaths to be built from

for(int i=0; i < 1024; i++){
a[i] = b[i] + c[i];

1); CPU
Implementation

custom hardware in FPGAs

» Useful to offload code with dependencies
that are difficult to execute in a data

parallel fashion
= | ook like CPU code

« Contain an outer loop to process all data

= |deal for & recommended for FPGAS

FPGA Kernel
Implementation

h.single task([=](){
for (int i=0; i < 1024; i++) {
A[i] = B[i] + C[i];
}
1)

Copyright © 2021 Intel Corporation

intel.

24

Parallel Kernels

= Parallel Kernels allow multiple
iInstances of an operation to
execute in parallel

» Parallel kernels are expressed
using the parallel for() function

= Kernels that are easily expressed in
this way do well on GPUs

* Will be functional in an FPGA, but
usually result in a less optimal
iImplementation

Copyright © 2021 Intel Corporation

for(int i=0; i < 1024; i++){
a[i] = b[i] + c[i];

}); CPU
Implementation

GPU Kernel
Implementation

h.parallel for(range<1>(1024), [=](id<1> i){
A[i] = B[i] + C[i];
1)

intel.

25

DPC++ Class: buffer and accessor

= huffer

* Encapsulates dataina SYCL
application

* Across both devices and host!
B aCCessOor
* Mechanism to access buffer data

» Determines data dependencies in
that order kernel executions
(covered later)

Copyright © 2021 Intel Corporation

int main() {
.. // Code to set up standard C++ vectors

buffer buf_a(vector_a);
buffer buf_b(vector_b);
buffer buf_c(vector c);

queue q(selector);

g.submit([&](handler& h) {
accessor a(buf_a, h, read_only);
accessor b(buf_b, h, read only);
accessor c(buf_c, h, write_only);

h.single_task<VectorAdd>([=]() {
for (int i = @; i < kSize; i++) {
c[i] = a[i] + b[i];

}
1)
})s

intel.

26

#include Files

» oneAPI programs require the include of cl/sycl.hpp

» Programs targeting FPGAs require the include of
cl/sycl/INTEL/fpga_extensions.hpp

Copyright © 2021 Intel Corporation

// Always include these at the top of your program

#include <CL/sycl.hpp>
#include <CL/sycl/INTEL/fpga extensions.hpp>

intel.

27

void dpcpp_code(int* a, int* b, int* c) {

//Set up an FPGA device selector
INTEL: :fpga selector selector;

// Set up a DPC++ device queue
queue g(selector);

// Setup buffers for input and output vectors
buffer buf_a(a, range<1>(N));
buffer buf_b(b, range<1>(N));
buffer buf_c(c, range<1>(N));

//Submit Command group function object to the queue
g.submit([&](handler &h){

//Create device accessors to buffers
accessor a(buf_a, h, read_only);
accessor b(buf_b, h, read_only);
accessor c(buf_c, h, write_only);

//Dispatch the kernel
h.single_task<VectorAdd>([=]() {
for (int i = 0; i < kSize; i++) {
c[i] = a[i] + b[i];
}
})s

});

DPC++ Simple Program
Walk-Through

Step 1: Create a device selector targeting the FPGA

Copyright © 2021 Intel Corporation

intel.

28

void dpcpp_code(int* a, int* b, int* c) {

//Set up an FPGA device selector
INTEL: :fpga_selector selector;

// Set up a DPC++ device queue
queue q(selector);

// Setup buffers for input and output vectors
buffer buf_a(a, range<1>(N));
buffer buf_b(b, range<1>(N));
buffer buf_c(c, range<1>(N));

//Submit Command group function object to the queue
g.submit([&](handler &h){

//Create device accessors to buffers
accessor a(buf_a, h, read_only);
accessor b(buf_b, h, read_only);
accessor c(buf_c, h, write_only);

//Dispatch the kernel
h.single_task<VectorAdd>([=]() {
for (int i = 0; i < kSize; i++) {
c[i] = a[i] + b[i];
}
})s

});

DPC++ Simple Program
Walk-Through

Step 1: Create a device selector targeting the FPGA

Step 2: Create a device queue, using the FPGA device selector

Copyright © 2021 Intel Corporation

intel.

29

void dpcpp_code(int* a, int* b, int* c) {

//Set up an FPGA device selector
INTEL: :fpga_selector selector;

// Set up a DPC++ device queue
queue g(selector);

// Setup buffers for input and output vectors
buffer buf_a(a, range<1>(N));

buffer buf_b(b, range<1>(N));
buffer buf_c(c, range<1>(N));

//Submit Command group function object to the queue
g.submit([&](handler &h){

//Create device accessors to buffers
accessor a(buf_a, h, read_only);
accessor b(buf_b, h, read_only);
accessor c(buf_c, h, write_only);

//Dispatch the kernel
h.single_task<VectorAdd>([=]() {
for (int i = 0; i < kSize; i++) {
c[i] = a[i] + b[i];
}
})s

});

DPC++ Simple Program
Walk-Through

Step 1: Create a device selector targeting the FPGA

Step 2: Create a device queue, using the FPGA device selector

Step 3: Create buffers

Copyright © 2021 Intel Corporation

intel.

30

void dpcpp_code(int* a, int* b, int* c) {

//Set up an FPGA device selector
INTEL: :fpga_selector selector;

// Set up a DPC++ device queue
queue g(selector);

// Setup buffers for input and output vectors
buffer buf_a(a, range<1>(N));
buffer buf_b(b, range<1>(N));
buffer buf_c(c, range<1>(N));

//Submit Command group function object to the queue
g.submit([&](handler &h){

I

//Create device accessors to buffers
accessor a(buf_a, h, read_only);
accessor b(buf_b, h, read_only);
accessor c(buf_c, h, write_only);

//Dispatch the kernel
h.single_task<VectorAdd>([=]() {
for (int i = 0; i < kSize; i++) {
c[i] = a[i] + b[i];
}
})s

});

Copyright © 2021 Intel Corporation

DPC++ Simple Program
Walk-Through

Step 1: Create a device selector targeting the FPGA

Step 2: Create a device queue, using the FPGA device selector

Step 3: Create buffers

Step 4: Submit a command for execution

intel.

31

void dpcpp_code(int* a, int* b, int* c) {

//Set up an FPGA device selector
INTEL: :fpga_selector selector;

// Set up a DPC++ device queue
queue g(selector);

// Setup buffers for input and output vectors

buffer buf_a(a, range<1>(N));
buffer buf_b(b, range<1>(N));
buffer buf_c(c, range<1>(N));

//Submit Command group function object to the queue

g.submit([&](handler &h){

//Create device accessors to buffers
accessor a(buf_a, h, read_only);
accessor b(buf_b, h, read_only);
accessor c(buf_c, h, write_only);

DPC++ Simple Program
Walk-Through

Step 1: Create a device selector targeting the FPGA

Step 2: Create a device queue, using the FPGA device selector
Step 3: Create buffers

Step 4: Submit a command for execution

Step 5: Create buffer accessors so the FPGA can access the data

//Dispatch the kernel
h.single_task<VectorAdd>([=]() {
for (int i = 0; i < kSize; i++) {
c[i] = a[i] + b[i];
}
})s

});

Copyright © 2021 Intel Corporation

intel.

32

void dpcpp_code(int* a, int* b, int* c) {

2w e e e s DPC++ Simple Program

INTEL: :fpga_selector selector;

// Set up a DPC++ device queue Wal_k_Th rOugh

queue q(selector);

// Setup buffers for input and output vectors
buffer buf_a(a, range<1>(N));
buffer buf_b(b, range<1>(N));
buffer buf_c(c, range<1>(N));

Step 1: Create a device selector targeting the FPGA

Step 2: Create a device queue, using the FPGA device selector

//Submit Command group function object to the queue

Step 3: Create buffers
g.submit([&](handler &h){

//Create device accessors to buffers Step 4: Submit a command for execution
accessor a(buf_a, h, read_only);

accessor b(buf_b, h, read only);

Step 5: Create buffer accessors so the FPGA can access the data
accessor c(buf_c, h, write_only);

//Dispatch the kernel Step 6: Send a kernel for execution
h.single task<VectorAdd>([=]() { //////

for (int i = @; i < kSize; i++) {
c[i] = a[i] + b[i];
}
})s

})s

Copyright ® 2021 Intel Corporation intel.

void dpcpp_code(int* a, int* b, int* c) {

//Set up an FPGA device selector
INTEL: :fpga_selector selector;

// Set up a DPC++ device queue
queue g(selector);

// Setup buffers for input and output vectors

buffer buf_a(a, range<1>(N));
buffer buf_b(b, range<1>(N));
buffer buf_c(c, range<1>(N));

//Submit Command group function object to the queue

g.submit([&](handler &h){

//Create device accessors to buffers
accessor a(buf_a, h, read_only);
accessor b(buf_b, h, read_only);
accessor c(buf_c, h, write_only);

//Dispatch the kernel
h.single_task<VectorAdd>([=]() {
for (int i = 0; i < kSize; i++) {
c[i] = a[i] + b[i];
}
})s

});

Copyright © 2021 Intel Corporation

DPC++ Simple Program
Walk-Through

Step 1: Create a device selector targeting the FPGA

Step 2: Create a device queue, using the FPGA device selector
Step 3: Create buffers

Step 4: Submit a command for execution

Step 5: Create buffer accessors so the FPGA can access the data

Step 6: Send a kernel for execution

Donel

The contents of buf c are copied to *c when the

function finishes

(because of the buffer destruction of buf ¢)

intel. =

int main() {
auto R = range<1>{ num };
buffer<int> A{ R }, B{ R };
queue Q;

Q.submit([&](handler& h) {
auto out = A.get _access<access::mode::read_write>(h);

h.parallel for(R, [=](id<1> idx) {
out[idx] = idx[@]; }); }); } Kernel 1
Q.submit([&](handler& h) {
auto out = A.get_access<access::mode::read_write>(h);
h.parallel for(R, [=](id<1> idx) {
out[idx] = idx[@]; }); }); } Kernel 2
Q.submit([&](handler& h) {
auto out = B.get_access<access::mode::read_write>(h);
h.parallel for(R, [=](id<1> idx) {
out[idx] = idx[@]; }); }); } Kernel 3
Q.submit([&](handler& h) {
auto in = A.get_access<access::mode::read>(h);

auto inout =
B.get_access<access::mode: :read_write>(h);

h.parallel for(R, [=](id<1> idx) {
inout[idx] *= in[idx]; }); }); } Kernel 4

Copyright © 2021 Intel Corporation

Kernel Execution Order

§ = data

= Kernels can
dependence

execute at the
same time

Kernel 1

* |If no data
dependencies

m Accessors are
used to determine
dependencies

= Execution ordering
Is automatically
determined

B
Program
completion

intel.

35

Asynchronous Host/Kernel Execution

» The execution of
the host code is
asynchronous to
what is being
executed on the
accelerator

= [f you need
synchronization,
you must impose
that yourself

Copyright © 2021 Intel Corporation

Host code
execution

______ T

#include <CL/sycl.hpp>

#include <iostream>
constexpr int num=16;

using namespace cl::sycl;

int main() {
auto R = range<1>{ num };
buffer<int> A{ R };

queue{}.submit([&](handler& h) {

auto out =
A.get _access<access::mode: :write>(h);

h.parallel for(R, [=](id<1> idx) {
out[idx] = idx[@]; }); });

auto result =
A.get _access<access::mode::read>();

for (int i=0; i<num; ++1i)
std::cout << result[i] << "\n";

return 0;

}

Kernel
Execution

A

intel.

36

Synchronization Method 1: Host Accessor

" [n the command scope,
accessors are created for the
accelerator

" |n the application scope,
accessors are created for the
host

= A host accessor creates a
dependency node in the
execution graph

e Execution at the host is blocked
until the data is ready

Copyright © 2021 Intel Corporation

int main() {
constexpr int N = 100;
auto R = range<1>(N);
std: :vector<double> v(N, 10);
queue q;

buffer<double, 1> buf(v.data(), R);
g.submit([&] (handler& h) {
auto a = buf.get access<access::mode::read write>(h);

N h.parallel for(R, [=](id<1> i) {
)i] -= 2; Command
})s
15F Scope

N\

X
auto b = buf.get access<access::mode::read>();

for (int 1 = @; 1 < N; i++) Application
std::cout << v[i] << "\n";
return 0; SCOpe
i
intel.

37

Synchronization Method 2: Buffer Destruction

= Buffer creation happens within
a separate function scope

= \When execution advances
beyond this function scope,
buffer destructor is invoked

= Relinquishes ownership of data
and copies back the data to the
host memory

» Scope can also be created with
simple use of { }

Copyright © 2021 Intel Corporation

#include <CL/sycl.hpp>
constexpr int N=100;
using namespace cl::sycl;

void dpcpp_code(std::vector<double> &v, queue &q){
auto R = range<1>(N);
buffer<double, 1> buf(v.data(), R);
g.submit([&] (handler& h) {
auto a = buf.get access<access::mode::read_write>(h);
h.parallel for(R, [=](id<1> i) {
al[i] -= 2;
}s
})s

int main() {
std::vector<double> v(N, 10);
queue g;

dpcpp_code(v,q);

for (int i = @; i < N; i++)
std::cout << v[i] << "\n";
return 0;

intel.

38

Learn More About DPC++

* Download DPC++ book for free = DPC++ Training Modules

* https://link.springer.com/book/10.1 e https://devcloud.intel.com/oneapi/g
007%2F978-1-4842-5574-2 et_started/baseTrainingModules/

Module 1 Module 2

Introduction to DPC++ n DRCHS A Sivaciars
eeas « Usede on to officad
e

i Data Parallel C++

B Mastering DPC++ for Programming of Heterogeneous Systems using C++ and SYCL

Authors (view affiliations)

James Reinders, Ben Ashbaugh, James Brodman, Michael Kinsner, John Pennycook, Xinmin Tian

Book
1 21 207k
Citations Mentions Downloads
Download book PDF £ Download book EPUB ¥

Copyright ® 2021 Intel Corporation intel.

39

https://link.springer.com/book/10.1007%2F978-1-4842-5574-2
https://devcloud.intel.com/oneapi/get_started/baseTrainingModules/

Sub-Topics:

O = Introduction to oneAPI
Section: = Introduction to DPC++
' ' » What are FPGAs and Why
Usmg FP®GAS iy Should | Care About
the |ﬂtel OﬂeAP| Drogramming Them?
oolkits = Development Flow for Using
FPGASs with the Intel® oneAPI
Toolkits

Copyright © 2021 Intel Corporation

intel «

“Field Programmable Gate Array” (FPGA)

e “Gates” refers to transistors

* These are the tiny pieces of hardware on a chip that make up the design

* “Array” means there are many of them manufactured on the chip
« Many = Billions

* They are arranged into larger structures as we will see

* “Fleld Programmable” means the connections between the internal
components are programmable after deployment

FPGA = Programmable Hardware

Copyright © 2021 Intel Corporation

intel.

41

How an FPGA Becomes What You Want It To Be

The FPGA is made up of small
building blocks of logic and other
functions

Copyright © 2021 Intel Corporation |nte|® 42

How an FPGA Becomes What You Want It To Be

The FPGA is made up of small

building blocks of logic and other
functions

M0
w0 O
wE O

0= L

* You choose building blocks

Copyright © 2021 Intel Corporation

intel. 4

How an FPGA Becomes What You Want It To Be

The FPGA is made up of small

building blocks of logic and other
functions

[]

* You choose building blocks

» You configure those building
blocks

[] L]

Copyright © 2021 Intel Corporation

intel.

How an FPGA Becomes What You Want It To Be

The FPGA is made up of small
building blocks of logic and other
functions

= You configure the building blocks .

L

* You choose building blocks

= You connect the building blocks

These custom choices determine
the FPGA's functionality

Copyright ® 2021 Intel Corporation intel. 45

Blocks Used to Build What You've Coded

T
Custom iii
XOR 1
- T

i Custom state
- i machine

Look-up Tables
and Registers

i Custom 64-bit
Ll bit-shuffle and encode

Copyright ® 2021 Intel Corporation intel. 46

Blocks Used to Build What You've Coded

ST
ST
B
. H
addr i i
Memory (Heg
data_in i Small Larger
memories memories
i
On-chip RAM
Blocks HEH -
1 i
T

Copyright ® 2021 Intel Corporation intel.

Blocks Used to Build What You've Coded

Custom
Math

. Functions -

DSP Blocks

H N
H N
H N
B N N N R

Copyright ® 2021 Intel Corporation intel. 48

‘hen, It's All Connected
‘ogether

Blocks are connected with
custom routing determined by
your code

Copyright ® 2021 Intel Corporation intel. 49

What About Connecting to the Host?

Accelerated functions run on a
PCle attached FPGA card

The host interface is also “baked
IN" to the FPGA design.

This portion of the design is pre-
built and not dependent on your
source code.

Copyright ® 2021 Intel Corporation intel.

Intel FPGA Cards Available to use with oneAPI

Intel® FPGA Programmable Acceleration Card

QICEY: @3

Copyright © 2021 Intel Corporation

Intel® Programmable MAC ID PROM FLASH
Acceleration Card with " UB

Intel® Arria® 10 GX FPGA

QSFP+ 4x 10Gb
Networking Interface

2
i 8x PCle*
v

Intel® FPGA Programmable Intel Enpirion® USB
Acceleration Card D5005 Power Solutions 1

BMC __ Uuss
Intel MAX® 10 Hub
QSFP28 4x 25Gb s
Networking Interface 1l DDR4 w/ECC

QSFP28 4x 25Gb

Networking Interface DDR4 w/ECC

A
7
1 16x PCle*

v

intel.

51

Why should | care about
programming for an FPGA?

't all comes down to the
advantage of custom hardware.

Copyright © 2021 Intel Corporation |nte|. 2

IMAGE LOSSLESS COMPRESSION: GENUM"?S SEQUENCING
ACCELERATING PERFORMANCE :

solutions

| Sample FPGA Workloads |

KEY VALUE STORE DATABASE ANALYTIGS
ACCELERATING THROUGHPUT ACCELERATION

Gzip Compression

* FPGA Example included with
the Intel® oneAP| Base Toolkit

» Concurrent kernels for LZ77,
Huffman encoding and CRC

* You are encouraged to try it for
yourself!

Copyright © 2021 Intel Corporation

CRC

LZ77

Kernelto kernel pipe

time

intel.

Sub-Topics:

O = [ntroduction to oneAP|
Section: = Introduction to DPC++
: : * What are FPGAs and Why
Usmg FP®GAS with Should | Care About
the Intel® oneAP! Drogramming Them?
oolkits » Development Flow for Using
-PGASs with the Intel® oneAPI

Toolkits

Copyright © 2021 Intel Corporation

intel. s

Getting Started with oneAPI on an FPGA

1/O Memory Interfac
Pre-Compiled BSP

j""‘"T

intel.

FPGA Add-On'fer

+ oneAP| +

Base Toolkit

oneAPI

BASE TOOLKIT

Intel® oneAPI Base Toolkit Intel® FPGA Add-on for oneAPI Board Support Package (BSP)
Base Toolkit

Note: Developers using custom platforms should download the Intel® FPGA Add-on for Intel® Custom
Platforms with the respective Intel® Quartus® version and obtain a BSP from their 3" part platform vendor.

Copyright ® 2021 Intel Corporation intel. 26

https://software.intel.com/content/www/us/en/develop/articles/oneapi-standalone-components.html#fpga

Installing oneAPI

= Get started by visiting the Intel® Software Developer Zone page for
the Intel® oneAPI Toolkits

* https://software.intel.com/en-us/oneapi

= Get the Intel® oneAPI| Base Toolkit for Linux*

* Supports compiles for emulation and the optimization report

= Install the Intel FPGA Add-on for oneAPI Base Toolkit

* Needed for compiles to FPGA hardware

» Contains Intel® Quartus® Prime software “under the hood,” be sure to comply
to required versions of operating system

Copyright ® 2021 Intel Corporation intel. 57

https://software.intel.com/en-us/oneapi

Or, Skip the Setup and Use the Intel DevCloud!

Get to Know oneAP| Now

[| S h - No hardware acquisitions, system configurations, or software installations.
12N u ere. a Y 8

* https://software.intel.com/devcloud S T A S m———

Are you a forward-thinking developer interested in the next

Required Fields(")

*First Name

*Last Name

 Nodes with cards installed in the
group fpga_runtime

* Email Address
Business Ema

* Country / Region

* Nodes with extra memory for full

* Company or University

What is the

FPGA compiles in the group et Devcionc
fpga_compile |

* Which hardware and accelerator architecture are you
developing for? (Select all that apply)
ASICSs (application-specific integrated circuits

Copyright ® 2021 Intel Corporation intel. o8

https://software.intel.com/devcloud

FPGA Development Flow for oneAPI Projects

_ FPGA Development Flow
* FPGA Emulator target (Emulation)

« Compiles in seconds Coding
* Runs completely on the host !
R i ' ' : Emulation
OptlmlzatIOﬂ report generation Seconds : (Functional Valdation)
« Compiles in seconds to minutes
. | Minutes Static
|dentify bottlenecks Reports

* FPGA bitstream compilation

Full Compile and
Hardware Profiling

« Compiles in hours Hours

* Enable profiler to get runtime analysis \

Copyright ® 2021 Intel Corporation intel. 29

Anatomy of a dpcpp Command Targeting FPGAS

dpcpp -fintelfpga *.cpp/*.o0 [device link options] [-Xs arguments]

Target Platform
Language Input Files
DPCPP = Data source or object
Parallel C++

Copyright ® 2021 Intel Corporation intel. 60

Link Options FPGA-Specific

Arguments

Fmulation Does my code give me the

correct answers?

Seconds of Compilation

Quickly generate code that runs on the x86 host to emulate the FPGA
Developers can:
= Verify functionality of design through CPU compile and emulation.

= [dentify quickly syntax and pointer implementation errors for
iterative design/algorithm development.

» Enable deep, system-wide debug with Intel® Distribution for GDB.
» Functional debug of SYCL code with FPGA extensions.

Copyright ® 2021 Intel Corporation intel. 61

Emulation Command

#ifdef FPGA_EMULATOR
intel: :fpga emulator selector device selector;
#else

intel: :fpga selector device selector;
#endif Include this construct in
your code

dpcpp -fintelfpga <source file>.cpp -DFPGA_ EMULATOR

mycode.cpp

. /mycode .emu

Copyright ® 2021 Intel Corporation intel. 62

RepOrt Generation Where are the bottlenecks?

Minutes of Compilation

Quickly generate a report to guide optimization efforts

Developers can:

» [dentify any memory, performance, data-flow bottlenecks in their
design.

= Receive suggestions for optimization techniques to resolve said
bottlenecks.

» Get area and timing estimates of their designs for the desired FPGA.

Copyright ® 2021 Intel Corporation intel.

Command to Produce an Optimization Report

Two Step Method:
dpcpp -fintelfpga<source file>.cpp -c -o <file name>.o

dpcpp -fintelfpga<file name>.o

-fsycl-1ink

One Step Method:/

-Xshardware

The default value for —fsycl-link is -fsycl-link=early
which produces an early image object file and
report

dpcpp -fintelfpga<source file>.cpp/|-fsycl-1link|-Xshardware

= A report showing optimization, area, and architectural information
will be produced in <file_name>.prj/reports/

» We will discuss more about the report later

Copyright © 2021 Intel Corporation

intel. &

Bitstream Compilation

Runs Intel Quartus Prime Software “under the hood”
(no licensing required)

Developers can:

= Compile FPGA bitstream for their design and run it on an FPGA.
= Attain automated timing closure.

= Obtain In-hardware verification.

» Take advantage of Intel® VTune™ Profiler for real-time analysis of
design.

Copyright ® 2021 Intel Corporation intel.

Compile to FPGA Executable with Profiler

Two Step Method:
dpcpp -fintelfpga<source file>.cpp -c -0 <file name>.o
dpcpp -fintelfpga<file name>.o -Xshardware -Xsprofile

One Step Method:
dpcpp -fintelfpga<source_file>.cpp -Xshardware -Xsprofile

The profiler will be instrumented within the image and you will be able to run
the executable to return information to import into Intel® Vtune Amplifier.

To compile to FPGA executable without profiler, leave off —Xsprofile.

Copyright ® 2021 Intel Corporation intel. 66

Compiling FPGA Device Separately and Linking

" |[n the default case, the DPC++ Compiler handles generating the host
executable, device image, and final executable

" [t is sometimes desirable to compile the host and device separately
so changes in the host code do not trigger a long compile

This is the long

Partition code

compile

Then run this command to compile the FPGA image:

has_kernel.cpp
dpcpp -fintelfpgahas kernel.cpp -fsycl-link=image -o has_kernel.o -Xshardware

This command to produce an object file out of the host only code:
dpcpp -fintelfpgahost only.cpp -c -0 host only.o

host_only.c : : : :
—ONY-cPp This command to put the object files together into an executable:
dpcpp -fintelfpgahas kernel.o host only.o -o a.out -Xshardware

Copyright ® 2021 Intel Corporation intel. 67

_ab: Practice the FPGA Development
-low

Copyright © 2021 Intel Corporat ion |nte|. s

Section:
Introduction to
Optimizing FPGAS
with the Intel oneAPI
Toolkits

Copyright © 2021 Intel Corporation

Sub-Topics:

= Code to Hardware:; An
ntroduction

= Loop Optimization

= Memory Optimization

= Reports

= Other Optimization
Techniques

intel. o

| n te |.® I: P G AS Host Link /0 Memory Interface

Pre-Compiled BSP

"|mplementing Optimized
Custom Compute
Pipelines (CCPs)
synthesized from
compiled code

Custom Compute Pipeline

Copyright ® 2021 Intel Corporation intel. 70

How Is a Pipeline Built?

"Hardware is added for
« Computation
* Memory Loads and Stores

Loop
Control

* Control and scheduling

* Loops & Conditionals

for (int i=@; i<LIMIT; i++) {
c[i] = a[i] + b[i];
¥

Data Path
Control Path

Copyright © 2021 Intel Corporation |r\te|® 71

Connecting the Pipeline Together

* Handshaking signals for variable
latency paths

* Operations with a fixed latency
are clustered together

* Fixed latency operations
Improve

* Area: no handshaking signals
required

» Performance: no potential stalling
due to variable latencies

Copyright © 2021 Intel Corporation

/

"| |

intel.

72

Simultaneous Independent Operations

* The compiler automatically
identifies independent operations

* Simultaneous hardware is built to
iIncrease performance

* This achieves data parallelismin a
manner similar to a superscalar
processor

* Number of independent operations
only bounded by the amount of
hardware

Copyright © 2021 Intel Corporation

intel.

73

On-Chip Memories Built for Kernel Variables

//kernel scope

cgh.single task<>([=]() {
« Custom on-chip memory I S
structures are built for the

variables declared with the
kernel scope

arr[i] = ..; //store to memory

.. = arr[j] //load from memory

} //end kernel scope

: 32-bits
* Or, for memory accessors with a R
target of local

Pipeline
e Load and store units to the on- | gg;gg
chip memory will be built within ' structure [RGP
: : for array
the pipeline .

arr

Copyright © 2021 Intel Corporation

intel.

74

Pipeline Parallelism for Single Work-ltem

Kernels
handle.single task<>([=]() {

_ _ .. //accessor setup
* Single work-item kernels almost for (int i=0; i<LIMIT; i++) {

always contain an outer loop c[i] += a[i] + b[i];

}

* Work executing in multiple stages
of the pipeline is called “pipeline
parallelism”

* Pipelines from real-world code
are normally hundreds of stages
long

*Your job is to keep the
data flowing efficiently

Copyright ® 2021 Intel Corporation intel. 75

' Tday Key Concept
D_Ep@ﬂdenoes Wlthlﬂ the Custom built-in dependencies
Slﬂgle \/\/O rk—|tem Ke rnel_ make FPGAs powerful for

many algorithms

When a dependency in a single
work-item kernel can be resolved by
creating a path within the pipeline,
the compiler will build that in.

handle.single task<>([=]() {
int b = 0;
for (int i=0; i<LIMIT; i++) {
b += a[i];

} \
1)

intel. s

Copyright © 2021 Intel Corporation

How Do | Use Tasks and Still Get Data
Parallelism?

The most common technique is to unroll your loops

handle.single task<>([=]() {

.. //accessor setup teration
#pragma unroll 1
2
c[i] += a[i] + b[i];
} Iteration Fm+ Fm+ Fm}
3
Time

})s

Copyright ® 2021 Intel Corporation intel. 77

Unrolled Loops Still
Get Pipelined

The compiler will still pipeline an
unrolled loop, combining the two
technigues

A fully unrolled loop will not be pipelined
since all iterations will kick off at once

handle.single task<>([=]() {
. //accessor setup
#pragma unroll 3
for (int i=1; i<=9; i++) {
c[i] += a[i] + b[i];
}
1)

Copyright © 2021 Intel Corporation

Iteration
1

2

Iteration
3

Iteratlon

Iteratlon
6

Iteratlon

Iteratlon

Iteratlon

9
—

Time

intel.

78

What About Task Parallelism?

» FPGAS can run more than one Representqtion of Gzip FPGA example |
_ included with the Intel oneAPI Base Toolkit
kernel at a time

* The limit to how many independent kernels CRC
can run is the amount of resources available

to build the kernels
LZ77

Kernelto kernel pipe

* Data can be passed between
kernels using pipes

* Another great FPGA feature explained in the _
Intel® oneAPI DPC++ FPGA Optimization time
Guide

Copyright ® 2021 Intel Corporation intel. 79

So, Can We Build These? Parallel Kernels

» Kernels launched parallel for() or parallel for work group()

..//application scope

queue.submit([&](handler &cgh) {

auto A = A buf.get_access<access::mode: :read>(cgh);
auto B = B_buf.get_access<access::mode: :read>(cgh);
auto C = C_buf.get access<access::mode::write>(cgh);

cgh.parallel for<class VectorAdd>(num_items, [=](id<1> wiID) {
c[wiID] a[wiID] + b[wiID];
1)

})s

..//application scope

Copyright © 2021 Intel Corporation

Yes,
but, single _tasks

are recommended
for FPGAs.

Also, warning: the
loop optimizations
we talk about do
not all apply for

parallel kernels

intel.

Section:
Introduction to
Optimizing FPGAS
with the Intel oneAPI
Toolkits

Copyright © 2021 Intel Corporation

Sub-Topics:

= Code to Hardware: An
ntroduction

» Loop Optimization

= Memory Optimization

= Reports

= Other Optimization
Techniques

intel #

Single Work-Item Kernels

= Single work items kernels are = EIPRETRION] SRS
kernels that contain no ool Lt e fiereler Segi) {
. auto A =
reference to the work item ID A buf.get access<access::mode: :read>(cgh);
auto B =
m Usua“y laUﬂChed Wlth the B buf.get access<access::mode: :read>(cgh);
auto C =
8rOUp haﬂdl_er member functiOﬂ C_buf.get _access<access::mode: :write>(cgh);
Single_taSk() cgh.single_task<class swi_add>([=]() {
. _ for (unsigned i = @; i < 128; i++) {
* Or, launched with other functions c[i] = a[i] + b[i];
without a reference to the work }g’;
item ID (implying a work group size ;
of 1) P

..//application scope

» Contain an outer loop

Copyright ® 2021 Intel Corporation intel. 82

As a Reminder — Parallel Kernels

» Kernels launched with the
command group handler
member function
parallel for() or
parallel for work group()

= \We can build these
functionally, but not
recommended for best
performance

= Much of this section will not
apply to parallel kernels

Copyright © 2021 Intel Corporation

..//application scope

queue.submit([&](handler &cgh) {

auto A = A buf.get_access<access::mode::read>(cgh);
auto B = B_buf.get_access<access::mode::read>(cgh);
auto C = C_buf.get_access<access::mode::write>(cgh);

cgh.parallel for<class VectorAdd>(num_items, [=](id<1> wiID) {

c[wiID] = a[wiID] + b[wiID];
})s

})s

..//application scope

intel.

83

Understanding Initiation Interval

» dpcpp will infer pipelined parallel
execution across loop iterations

 Different stages of pipeline will ideally
contain different loop iterations

* Best case is that a new piece of data
enters the pipeline each clock cycle

cgh.single_task<class swi_add>([=]() {
for (unsigned i = 0; i < 128; i++) {
c[i] = a[i] + b[i];

¥

1)
a - Iteration number

Copyright © 2021 Intel Corporation

store C

intel.

84

Understanding Initiation Interval

» dpcpp will infer pipelined parallel
execution across loop iterations

 Different stages of pipeline will ideally
contain different loop iterations

* Best case is that a new piece of data
enters the pipeline each clock cycle

cgh.single_task<class swi_add>([=]() {
for (unsigned i = 0; i < 128; i++) {
c[i] = a[i] + b[i];

¥

1)
a - Iteration number

Copyright © 2021 Intel Corporation

store C

intel.

85

Understanding Initiation Interval

» dpcpp will infer pipelined parallel
execution across loop iterations

 Different stages of pipeline will ideally
contain different loop iterations

* Best case is that a new piece of data
enters the pipeline each clock cycle

cgh.single_task<class swi_add>([=]() {
for (unsigned i = 0; i < 128; i++) {
c[i] = a[i] + b[i];

¥

1) .
- Iteration number

Copyright © 2021 Intel Corporation |r\te|® 86

store C

Loop Pipelining vs Serial Execution

Serial execution is the worst case. One iteration needs to complete
fully before a new piece of data enters the pipeline.

Worst Case Best Case

i1 For Begin

it

10

Copyright ® 2021 Intel Corporation intel. 87

INn-Between Scenario

= Sometimes you must wait more
than one clock cycle to input
more data

» Because dependencies can't
resolve fast enough

* How long you have to wait is
called Initiation Interval or I

= Total number of cycles to run
kernel is about (loop iterations)*|l

* (neglects initial latency)
= Minimizing Il is key to
performance

Copyright © 2021 Intel Corporation

Il =6

6 cycles later,

next iteration

enter the loop
body

intel.

88

Why Could This Happen?

b+

Report: fpga_970fa3 - Mozilla Firefox

@ Report: fpga_970fa3

&« C @

* Memory Dependency

Reports l Summary ” Throughput Analysis ~ ” Area Analysis ~ ” System Viewers ~

Loops Analysis Show fully unrolled loops

e Kernel cannot retrieve dat
enough from memory oames 1 spectmcaentons oces .

93

Kernel: constzHough_transform_kernel (hough_transfo.. Single work-it...

54
95
Serial exe: Me... 06
97 -
08 -
Serial exe: Me... a9
186 -
181

Memory dep... 162 -
iz 183

constzHough_transform_kernelB1 {hough_transfor... Yes ==1 o}
constzHough_transform_kernelB3 {hough_tran... Yes ==1 o}

constzHough_transform_kernelB5 (hough ... Yes ~339 1

185 -
186

» I

188

_accumulators[(THETAS*(rho+RHOS))+theta] += increment; — -

116
111

Value must be retrieved from global -
memory and incremented

Details

const::Hough_transform_kernel.B5:

+ Compiler failed to schedule this loop with smaller Il due to memory dependency:
* From: Load Operation (hough_transform.cpp: 107)
+ To: Store Operation (hough_transform.cpp: 107)

+ Compiler failed to schedule this loop with smaller Il due to memory dependency:
* From: Load Operation (hough_transform.cpp: 106 > accessor.hpp: 928)

Copyright © 2021 Intel Corporation

(@ Ffile:///home/student/DevConFPGALab/original/fpga.pri/reports/report.html#view:

hough_transform.cpp

w N @0 ®

q x

auto _sin_table = sin_table_buf.get_access=sycl::access::mode
s:read=(cgh);

auto _cos_table = cos_table_buf.get_access=sycl::access: :mode
r:read={cgh);

auto _accumulators = accumulators_buf.get_access<sycl::access
::mode: iread_write={cgh);

Jjcall the kernel
cgh.single_task<class Hough_transform_kernel=([=]() {
for (uint y=0; y<HEIGHT; y=+) {
for (uint x=8; x<WIDTH; =++){
unsigned short int increment = 8;
if {_pixels[(WIDTH*y)+x] != 8) {
increment = 1;
} else {

increment = 8;
for (int theta=8; theta<THETAS; thetas+){

int rho = x*_cos_table[theta] = y*_sin_table[theta];
_accumulators[(THETAS* (rho+RHOS))+theta] += increment

1
1
1

1

intel.

89

What Can You Do? Use Local Memory

» Transfer global memory
contents to local memory
before operating on the data

constexpr int N = 128;
queue.submit([&](handler &cgh) {
auto A =

A buf.get access<access::mode::read write>(cgh);

cgh.single_task<class unoptimized>([=]() {
for (unsigned i = @; i < N; i++)
A[N-i] = A[i];

}
})s

1 Non-optimized

Copyright © 2021 Intel Corporation

constexpr int N = 128;
queue.submit([&](handler &cgh) {
auto A =

A buf.get access<access::mode::read write>(cgh);

cgh.single task<class optimized>([=]() {
int B[N];

for (unsigned i
B[1] = A[i];

O; 1 < N; i++)

for (unsigned i
B[N-i] = B[i];

O; 1 < N; i++)

for (unsigned i
A[i] = B[1i];
1)

O; i < N; i++)

intel.

90

What Can You Do? Tell the Compiler About
Independence

" [[1ntelfpga::1vdep]]
* Dependencies ignored for all accesses to memory arrays

[[intelfpga::ivdep]]
for (unsigned i = 1; i < N; i++) {

A[i] = AL - X[1]1; Dependency ignored for A and B array
B[i] = B[i - Y[i]];

)
" [[intelfpga::ivdep (array name)]]
* Dependency ignored for only array name accesses
[[intelfpga::ivdep(A)]]

for (unsigned [i]= 1; [i < NS[i]+]+) { Dependency ignored for A array
A[i] = A[i - X[1]]; .
B[i] = B[i - Y[i]]; Dependency for B still enforced

}

Copyright ® 2021 Intel Corporation intel.

91

Why Else Could This Happen?

* Data Dependency

e Kernel cannot

complete a calculation

fast enough

r_int[k] = ((a_int[k] / b_int[k]) / a_int[1]) / r_int[k-1];
Difficult double precision floating point

operation must be completed

Copyright © 2021 Intel Corporation

Report: fpga_0cbd30 - Mozilla Firefox

@ Report:fpga_Ochd3o x &

<« ¢ @ @ File:///home/student/sandbox_oneAPI/fpga_compile/bad_multiply/fpga.prj/reports/re see w n o ® =
Reports Summary l Throughput Analysis ~ H Area Analysis ~ H System Viewers ¥ l
Loops Analysis Show fully unrolled loops memory_dep.cpp :I X
63 -7 -
64
Pipelined [} Speculated iterations Details P // Kernel
66 cgh.singleﬁ!:ask:class Simpleadd=([=1() {
Kernel: SimpleAdd [memory_dep cpp:66) Single work-item.. g; gg:ﬂ: a_:;tE;SE:_EEH:
69 double r_int[ARRAY_SIZE];
78
SimpleAdd.B2 (memory_dep.cpp:7 1) Yes ~1 3 71~ for (int 1i=8; 1<ARRAY_SIZE; is+) {
72 a_int[i] = a[il;
73 b_int[i] = b[il;
SimpleAdd.B3 (memory_dep.cpp:76) Yes 38 3 Data dependency 74 1
75

L L
SimpleAdd B4 (memory_dep.cpp:80) Yes ~1 3 [a_int[1]) / r_int[k-1]; I

for (int i=B; L<ARRAY_SIZE; i++) {
r[i] = r_int[i];

B2 }

83 DH

B4 H

BS

B& deviceQueue->throw_asynchronous();
BT

BB~ } catch (cl::sycl::exception constf e) {
Details x

SimpleAdd.B3:

* Most critical loop feedback path during scheduling:
» 36.00 clock cycles 64-bit Double-precision Floating-point Divide Operation (memory_dep.cpp: 77)
* Hyper-Optimized loop structure: nfa
« Stallable instruction: None
+ Maximum concurrent iterations: Capacity of loop

intel.

92

What Can You Do?

= Do a simpler calculation

» Pre-calculate some of the operations on the host
=Use a simpler type

» Use floating point optimizations (discussed later)

» Advanced technigue: Increase time (pipeline stages)
between start of calculation and when you use answer

* See the “Relax Loop-Carried Dependency” in the Optimization
Guide for more information

Copyright ® 2021 Intel Corporation intel. 93

How Else to Optimize a
Loop? Loop Unrolling

* The compiler will still pipeline
an unrolled loop, combining the
two techniques

» A fully unrolled loop will not be pipelined
since all iterations will kick off at once

handle.single task<>([=]() {
. //accessor setup
#pragma unroll 3
for (int i=1; i<9; i++) {
c[i] += a[i] + b[i];
}
})s

Copyright © 2021 Intel Corporation

Iteration
1

2

Iteration
3

Iteratlon

Iteratlon

Iteratlon
6

Iteratlon

Iteratlon

Iteratlon

9
—

Time

intel.

94

Maximum Clock Frequency (Fmax)

* The clock frequency the FPGA will be clocked at depends on what
hardware your kernel compiles into

* More complicated hardware cannot run as fast

= The whole kernel will have one clock

= The compiler’s heuristic is to get a lower ll, sacrificing a higher Fmax

A slow operation can slow down your entire kernel by lowering the
clock frequency

Copyright © 2021 Intel Corporation

intel. o

How Can You Tell This Is a Problem?

= Optimization report
tells you the target
frequency for each Twpet Scheduled MAX Blockll Latency Maxinterlesving Reratons
loop in your code Keret: exampte (Targe Fma: Not pecfied Wi) mas c23)

Cgh .S i ngle_ta S k< example > ([=] () { Block: example.BO Not specified 240.0 1 2 1
1 nt res = N ; Block: example.B2 Not specified 240.0 1 6 1
#pragma unroll 8
'For‘ (in‘t i = @; i < N; i++) { Loop: example.B1 (fmaxii.cpp:26)

Block: example.B1 Not specified 106.5 2 7 1
res += 1;
res "= 1i;

}
acc_data[9] res;
})s

Copyright ® 2021 Intel Corporation intel. 96

What Can You Do?

s Make the calculation simpler

= Tell the compiler you'd like to change the trade off
between |l and Fmax

* Attribute placed on the line before the loop

* Set to a higher Il than what the loop currently has
[[intelfpga::ii(n)]]

Copyright © 2021 Intel Corporation

intel.

Area

* The compiler sacrifices area in order to improve loop performance.
What if you would like to save on the area in some parts of your
design?

* Give up Il for less area

» Set the Il higher than what compiler result is

[[intelfpga::ii(n)]]

* Give up loop throughput for area

« Compiler increases loop concurrency to achieve greater throughput

» Set the max_concurrency value lower than what the compiler result is

[[intelfpga: :max_concurrency(n)]]

Copyright ® 2021 Intel Corporation intel. 98

Section:
Introduction to
Optimizing FPGAS
with the Intel oneAPI
Toolkits

Copyright © 2021 Intel Corporation

Sub-Topics:

= Code to Hardware: An
Introduction

" | oop Optimization
= Memory Optimization
= Reports

= Other Optimization
Techniques

intel. o

Understanding Board Memory Resources

Memory Type Physical Latency Throughput Capacity
Implementation | for random access (GB/s) (MB)
(clock cycles)
Global DDR 34133 8000
On-chip RAM ~8000 06
Local _
Registers ~240 0.2

Key takeaway: many times, the solution for a bottleneck caused by slow
memory access will be to use local memory instead of global

Copyright © 2021 Intel Corporation inteL 100

Global Memory Access is Slow — What to Do?

= We've seen this before... This constexpr int N = 128;
_ queue.submit([&](handler &cgh) {
will appear as a memory auto A =

A_buf.get_access<access::mode::read_write>(cgh);
dependency problem

cgh.single task<class optimized>([=]() {

[int B[N];

constexpr int N = 128;

queue.submit([&](handler &cgh) { for (unsigned i = @; i < N; i++)
auto A = B[1] = A[i];

A buf.get access<access::mode::read write>(cgh);

for (unsigned i = ©; i < N; i++)

cgh.single task<class unoptimized>([=]() { B[N-1] = B[i];

for (unsigned i = @; i < N; i++)
A[N-i] = A[i];

) .
13 s

for (unsigned i = @; i < N; i++)
A[i] = B[1i];

D

Copyright ® 2021 Intel Corporation intel.

101

Local Memory Bottlenecks ® e

o
. (W)

= [f more load and store points want |
to access the local memory than ©
there are ports available, arbiters 1 ®)
will be added & —
= These can stall, so are a potential @<_ ®
bottleneck \ (W)
" Show up in red in the Memory ® (w)
Viewer section of the optimization @

report

Copyright ® 2021 Intel Corporation intel. 2

Local Memory Bottlenecks

T o Local Memory Interconnect o

Natively, the memory architecture has 2 ports

The compiler uses optimizations to minimize arbitration

Your job is to write code the compiler can optimize

Copyright © 2021 Intel Corporation inteL, 103

Double-Pumped Memory Example

array
Bank O

= |[ncrease the clock rate to 2x

= Compiler can automatically
implement double-pumped memory

//kernel scope

int array[1024];

array[indl] = val;

array[ind1+1] = val;

|
® & ®

calc =|array[ind2] array[ind2+1];

Copyright ® 2021 Intel Corporation intel. -

Local Memo ry Rep lication Exam 9 le helenihaiofniy

Humber of write ports per bank: 1

Total replication: 3

//kernel scope

LD R

int array[1024]; 5 -
int res = 0;
(:) array[indl] = val; ~ .
#pragma unroll
for (int i = @0; i < 9; i++) LD .
res += array[ind2+i]; ~ R
calc = res; B -
Turn 4 ports of double-pumped memory to unlimited ports 5 .

7]

T Ly

Drawbacks: logic resources, stores must go to each replication

Copyright © 2021 Intel Corporation intel 105

Coalescing

//kernel scope

local int array[1024];
int res = 0;

#pragma unroll
for (int 1 = 0; i < 4;

Width: 128 bits
Type: Pipelined
stall-free: Yes
Loads from: array

start-Cycle: 2
Latency: 3

array[ind1*4 + 1]

#pragma unroll
for (int i = 0;

i< 4;

res += array[ind2*4 + i];

calc = res;

Copyright © 2021 Intel Corporation

i++)
= Vaj_; LD

it++)
ST

Continuous addresses can be
coalesced into wider accesses

I T

Width: 128 bits
Type: Pipelined
Stall-free: Yes

intel.

106

Banking

array
= Divide the memory into independent fractional Bank 0

pieces (banks)

//kernel scope

@ ®
& ®

Ent array[1024][2];

|array[ind1][@] = valil; |
array[ind2][1] = val2; Bank 1

LD —
calc = |(array[ind21[0] +f///, <:>

array[ind1][11);

®

©
=)

ST

Copyright ® 2021 Intel Corporation intel. o

Attributes for Local Memory Optimization

Note: Let the compiler try on it's own first.
It's very good at inferring an optimal structurel!

numbanks
bankwidth
singlepump
doublepump
max_replicates

simple_dual_port

[intelfpga::singlepump]

[intelfpga::numbanks(N)].
[intelfpga::bankwidth(N)].

[[intelfpga::doublepump

[intelfpga::max_replicates(N)].

[intelfpga::simple_dual _po

Note: This is not a comprehensive list. Consult the Optimization Guide for more.

Copyright © 2021 Intel Corporation

]

rt]]

intel. o8

Pipes — Element the Need for Some Memory

Create custom direct point-to-point communication
between CCPs with Pipes

Global Memory
Q
o

CCP 1 | Pipe CCP 2 Pipe CCP 3

Copyright ® 2021 Intel Corporation intel. 0

Task Parallelism By Using Pipes

* Launch separate kernels simultaneously

» Achieve synchronization and data sharing using pipes

= Make better use of your hardware

Kernel 1
fordi=D. .N) {

mypipe: :write (x);

Kernel 2

for(i1=0..N) {

}

» YV = mypipe::read();

Copyright © 2021 Intel Corporation

intel.

110

Section:
Introduction to
Optimizing FPGAS
with the Intel oneAPI
Toolkits

Copyright © 2021 Intel Corporation

Sub-Topics:

= Code to Hardware: An
ntroduction

" | oop Optimization

= Memory Optimization

= Reports

= Other Optimization
Techniques

intel. '

HTML Optimization Report

= Static report showing optimization, area, and architectural
information

* Automatically generated with the object file

e Located in <file_name>.prj\reports\report.html

* Dynamic reference information to original source code

Copyright ® 2021 Intel Corporation intel.

Optimization Report — Throughput Analysis

* L oops Analysis and Fmax |l
sections

= Actionable feedback on
pipeline status of loops

= Show estimated Fmax of each
loop

Copyright © 2021 Intel Corporation

hough_transform.cpp

= Reporc: rpga_vruras x
= ¢ @ @ File:///home/student/DevConFPGALab/original/f
Reports —
Loops Analysis Show fully unrolled loops
Pipelined Il Specu g; N
99
160 ~
Kernel: constz=Hough_transform_kernel (hough_transf... 101
102 -
103
const=Hough_transform_kernelB1 (hough_transfor... Yes >=1 0 164
165 -
const=Hough_transform_kernelB3 (hough_tran.. Yes >=1 0 166
107
const-Hough_transform_kernelBS (hough... Yes ~339 1 108
109
118

Details

const::Hough_transform_kernel.B3:

A 4 In @ ®

Hough_transform_kernel>([=]() {
for (uint y=0; y<HEIGHT; y++) {
for (uint x=0; x<WIDTH; x++){
unsigned short int increment = @;
if (_pixels[(WIDTH*y)+x] != @) {
increment = 1;
} else {
increment = 0;

for (int theta=8; theta<THETAS;
theta++){
int rho = x*_cos_table[theta] +
y*_sin_table[theta];
_accumulators[(THETAS* (rho+RHOS
))+theta] += increment;

« |teration executed serially across const::Hough_transform_kemnel.B5. Only a single loop iteration will execute

inside this region due to memory dependency:

* From: Load Operation (hough_transform.cpp: 107)

* To: Store Operation (hough_transform.cpp: 107)

« |teration executed serially across const::Hough_transform_kernel.B5. Only a single loop iteration will execute

|

intel.

113

Optimization Report — Area Analysis

Report: fpga_970fa3 - Mozilla Firefox

& Report: fpga_970fa3 b+

- Generate detal led eStI mated (« c {.}_ @ file;///home/student/DevConFPGALab/original/fpga. =+ © ¥ m o e® =
area utilization report of kernel | &~

Area Analysis of System hough_transform.cpp j X

(area utilization values are estimated) ecC 98 ~ for (uint x=0; x<WIDTH; x++){
S C O p e C O e Notation file:X > file:Y indicates a function call on line X was inlined using code online Y.~ 99 unsigned short int increment = 0;
160 ~ if (_pixels[(WIDTH*y)+x] != @) {
161 increment = 1;
ALUTs FFs 102 ~ } else {
. :gz ; increment = 0;
Function overhead 1338 2411 - z =0; = ;
* Detailed breakdown of resources by i e ——
Private Varlable: 27 43 107 acc;iigzsz}?ggglérhu-RHOS :
system blocks o o109 o il
10 !
. . . Private Variable: B - ::; "
* Provides architectural details of HW | __ .

Private Variable: - 'theta’ (hough_transform.cpp:105):

* Suggestions to resolve inefficiencies

* Type: Register
» 1 register of width 9 and depth 342 (depth was increased by a factor of 339 due to a loop initiation interval of 339.)
» 1 register of width 32 and depth 342 (depth was increased by a factor of 339 due to a loop initiation interval of 339.)

Copyright ® 2021 Intel Corporation intel. ¢

Optimization Report — Graph Viewer

* The system view of the
Graph Viewer shows
following types of
connections

e Control

* Memory, if your design has
global or local memory

* Pipes, if your design uses
pipes

Copyright © 2021 Intel Corporation

Keport: SimpleKernel - Mozilla Firerox

2 Report: SimpleKernel % | +

= cC @ @ file:///home/student/fpga_trn/OCL_19_1/SimpleKernel/reports/report. htmidvie: o O

Summary Throughput Analysis~ Area Analysis~ System Viewers~

Reports

System Viewer Reset Zoom Clear Selection ¥ Control (¥ Memory SimpleKemnel.cl

1 //ACL Kernel

N @

2 kernel
3 void SimpleKernel(__global const float * restrict in,
__global const float * restrict in2, _ global
float * restrict out, uint N)
4- {
5 //Perform the Math Operation
6 for (uint index = @; index < N; index++)
7 out[index] = in[index] *
8 }
~—+Glgbal Mamary
»a«:lr: ooa[y
—
Details
Store:
Width 32 bits
Type Burst-coalesced
Stall-free No
Start Cycle 14
Latency 2

intel.

115

Optimization Report — Schedule Viewer

Schedule in clock
cycles for different
blocks in your
code

Copyright © 2021 Intel Corporation

Reports l Summary H Throughput Analysis ¥ “ Area Analysis ¥ H System Viewers

Schedule List
(alpha)

+ @ system
+ @ _zrszzamai
E const::Hot
B const::Hot
B const:Hot
2 B const:Hot
i} Cluster
E const::Hot
4 E const::Hot
8 Cluster
E const::Hot

4 E const::Hot
ﬂ Clactar

Details

Schedule Viewer (alpha)

t]e]a]e]

...Comp.

Xor—

Cluster instruction schedule cycle

Absolute clock cycle

hough_transform.cpp :| X

1 pFinclude <vector>

2 #include <CL/sycl.hpp>

3 #include <CL/sycl/intel/fpga_extensions.hpp>

4 #include <chrono>

5

6 [/ This file defines the sin and cos values for each degree up to 180
7 #include "sin_cos_values.h”

8

9 #define WIDTH 180

180 #define HEIGHT 120

11 #define IMAGE_SIZE WIDTH*HEIGHT

12 #define THETAS 188

13 #define RHOS 217 //Size of the image diagonally: (sqrt(188°2+120°2))
14 #define NS (1000000000.8) // number of nanoseconds in a second

15

16 using namespace std;

17 using namespace cl;

18

19 // This function reads in a bitmap and outputs an array of pixels
20 void read_image(char *image_array);
21
22 class Hough_Transform_kernel;
23
24~ int main() {
25

[/Declare arrays

intel.

HTML Kernel Memory Viewer

- I_l e l pS yo u |d e ntlfy d ata Reports | Summar y H Throughput Analysis ~ H Area Analysis H System Viewers J
m O\/e m e nt b Ott l e n e C kS I n yo u r_ jd;m:r:::t Lo Memory Viewer Reset Zoom‘Clear Selection‘ Ogug:;:—r;
kernel design. Illustrates: P o {
e =0 .
* Memory replication 9 O F
i @ =N .

3 1d @nlines L ig usi
« Banking o - -

21
9] MemRang 22 cl:
£ MemRang 23
24~ int

* Implemented arbitration — £

w

©,
-
o
-~
~

Details

» Read/write capabilities of each
Requested size 156240 bytes
m e m O ry p O rt Implemented size 256 kilobytes = 2¢eilog2(Rec
Number of banks 1
Bank width (word size) 16 bits
Bank depth 131072 words

Copyright ® 2021 Intel Corporation intel.

Section:
Introduction to
Optimizing FPGAS
with the Intel oneAPI
Toolkits

Copyright © 2021 Intel Corporation

Sub-Topics:

= Code to Hardware: An
ntroduction

= Loop Optimization

= Memory Optimization

= Reports

= Other Optimization
Techniques

intel ¢

Avoid Expensive Functions

"Expensive functions take a lot of hardware and run
slow

"Examples

* Integer division and modulo (remainder) operators

* Most floating-point operations except addition,
multiplication, absolution, and comparison

e Atomic functions

Copyright ® 2021 Intel Corporation intel. o

Inexpensive Functions

= Use instead of expensive functions whenever possible
* Minimal effects on kernel performance

e Consumes minimal hardware

» Examples
* Binary logic operations such as AND, NAND, OR, NOR, XOR, and XNOR
* Logical operations with one constant argument
* Shift by constant
* Integer multiplication and division by a constant that is to the power of 2
* Bit swapping (Endian adjustment)

Copyright ® 2021 Intel Corporation intel. 20

Use Least-"Expensive” Data Type

» Understand cost of each data type in latency and logic usage
* Logic usage may be > 4x for double vs. float operations

* Latency may be much larger for float and double operations compared to
fixed point types

* Measure or restrict the range and precision (if possible)
* Be familiar with the width, range and precision of data types
» Use half or single precision instead of double (default)
» Use fixed point instead of floating point

 Don't use float if shortis sufficient

Copyright ® 2021 Intel Corporation intel. =

Floating-Point Optimizations

» Appliesto half, float and double data types

= Optimizations will cause small differences in floating-point results
* Not IEEE Standard for Floating-Point Arithmetic (IEEE 754-2008) compliant

» Floating-point optimizations:
* Tree Balancing

* Reducing Rounding Operations

Copyright ® 2021 Intel Corporation intel. 22

Tree-Balancing

= Floating-point operations are not associative
* Rounding after each operation affects the outcome
e ie. ((a+tb) + ¢) I= (a+(b+q))

» By default the compiler doesn’t reorder floating-point operations
* May creates an imbalance in a pipeline, costs latency and possibly area

* Manually enable compiler to balance operations

* For example, create a tree of floating-point additions in SGEMM, rather than
a chain

» Use -Xsfp-relaxed=true flag when calling dpcpp

Copyright ® 2021 Intel Corporation intel. 2

Rounding Operations

= For a series of floating-point operations, IEEE 754 require multiple
rounding operation

» Rounding can require significant amount of hardware resources

» Fused floating-point operation

» Perform only one round at the end of the tree of the floating-point
operations

« Other processor architectures support certain fused instructions such as
fused multiply and accumulate (FMAC)

* Any combination of floating-point operators can be fused
» Use dpcpp compiler switch -Xsfpc

Copyright ® 2021 Intel Corporation intel.

References and Resources

= 12
Copyright © 2021 Intel Corporat ion |nte|. 5

References and Resources

= Website hub for using FPGAs with oneAP|

* https://software.intel.com/content/www/us/en/develop/tools/oneapi/compo
nents/fpga.html

" Intel® oneAPI Programming Guide

 https://software.intel.com/content/www/us/en/develop/download/intel-
oneapi-programming-guide.ntml

" Intel® oneAPI DPC++ FPGA Optimization Guide

* https://software.intel.com/content/www/us/en/develop/download/oneapi-
fpga-optimization-guide.html

» FPGA Tutorials GitHub
* https://github.com/intel/BaseKit-code-samples/tree/master/FPGATutorials

Copyright ® 2021 Intel Corporation intel.

https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/fpga.html
https://software.intel.com/content/www/us/en/develop/download/intel-oneapi-programming-guide.html
https://software.intel.com/content/www/us/en/develop/download/oneapi-fpga-optimization-guide.html
https://github.com/intel/BaseKit-code-samples/tree/master/FPGATutorials

_ab: Optimizing the Hough Transtorm
Kernel

= 12
Copyright © 2021 Intel Corporat ion |nte|. 7

Legal Disclaimers/Acknowledgements

= Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.

» Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software,
operations and functions. Any change to any of those factors may cause the results to vary. You should consult other
information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of
that product when combined with other products. For more complete information visit www.intel.com/benchmarks.

= Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates.
See backup for configuration details. No product or component can be absolutely secure.

» Your costs and results may vary.

* |ntel technologies may require enabled hardware, software or service activation
» No product or component can be absolutely secure

» Your costs and results may vary

» |ntel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may
be claimed as the property of others

» OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos

= *QOther names and brands may be claimed as the property of others

Copyright ® 2021 Intel Corporation intel.

Copyright © 2021 Intel Corporation.

This document is intended for personal use only.

Unauthorized distribution, modification, public
performance, public display, or copying of this material via
any medium is strictly prohibited.

